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Ensuring (system) integrity is an important detail in software security products such as anti-

cheats or anti-viruses. These are prevalent to make sure that the operating system’s main

functionality has not been tampered. One common integrity check is the verification of

individual driver objects. These driver objects can be manipulated directly in memory (direct

kernel object modification) for any number of reasons, but the specific exploitation that this

article revolves around is the modification of the major function

IRP_MJ_DEVICE_CONTROL, known as the I/O handler.

… DeviceIoControl hook?

Hooking DeviceIoControl is a common method to intercept information fetches from drivers

such as the disk driver (disk.sys) for disk information or the network driver (ndis.sys) for

adapter information. This type of information is quite trivial to fetch and is used by anti-

cheats and other software products for identifying unique users for licensing or blacklisting.

[Cheaters have been combatting this type of hardware-ban (Flagging certain hardware serial

numbers and banning anyone with associated them) for years by intercepting

DeviceIoControl calls to appear as if they are using completely different hardware.

A great example of this is the hdd serial spoofer project by namazso, that hooks the disk

driver and spoofs any queries to harddrive serial numbers, preventing anti-cheats such as

BattlEye or Easy Anti Cheat from blacklisting players solely through disk information.

This method is really simple, and consists of directly modifying the function pointer table

MajorFunction in the given driver object. This table contains all of the essential functions for

the driver, including the DeviceIoControl function (IRP_MJ_DEVICE_CONTROL) and is

used by system operations to look up the respective handler of a certain event. To hook the

I/O handler, we simply overwrite the function pointer to our given intermediate:

auto& io_handler = driver_object->MajorFunction[IRP_MJ_DEVICE_CONTROL]; 
ioctl_hook::original_handler = io_handler;  // SAVE ORIGINAL FUNCTION 
io_handler = ioctl_hook::handler;           // SET POINTER TO HOOK 

And as always, it is just as trivial to find out if the driver object has been modified.

https://secret.club/2019/11/06/kernel-code-alignment.html
https://secret.club/author/vmcall
https://github.com/namazso/hdd_serial_spoofer
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Blind integrity checks

Anti-cheats such as BattlEye and Easy Anti Cheat use the same method to ensure the

integrity of the major function table:

const auto& section = pe->sections[".text"]; 

for (const auto& major_function : driver->major_functions) 
{ 
   if (major_function.address < section.address ||  
       major_function.address >= section.address + section_size) 
   { 
       // ANOMALY FOUND 
       // .. 
   } 
} 

This is what I call a blind integrity check, as you do not actually know where the entries are

supposed to point to, but you still need to make sure that they haven’t been tampered with.

As seen as above, this is done by comparing each entry to the memory region where they

should reside - inside of the executable section of the driver. If the table entry points to a

memory location that is outside of the driver object, it has most likely been hijacked by a

malicious actor. This integrity check assumes that the target function has not been tampered

with as long as it resides inside of the executable read-only section.

What this fails to detect, is if we have changed the table entry to something we can control,

without leaving the section.

Hijacking control flow

How do we even hijack control flow when we’re not able to change section data nor leave the

section? Since we can actually control the execution flow, we can decide which byte sequence

executes when the I/O handler is called, and as you probably already know, the CPU doesn’t

actually care about alignment. If we can find a byte sequence that yields a branch operation

to a destination outside of the module, we can successfully hook the function without

triggering the integrity check.

We can use the disk driver as a case study. First, let’s dump the .text section of the loaded

drisk driver by attaching windbg/kd and running the following command: .writemem
E:\disksys.dmp disk.sys+0x1000 disk.sys+0x6000

This will output the .text section (of virtual size 0x5000) to the specified destination on disk.

When that is done, we can create a simple branch analyzer using an arbitrary x86_64

disassembler and print out all unconditional branch operations including the destination,

which we can later check for validity,

Here’s a snippet of the 198 unconditional branch operations my static analyzer found:
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.\branch_analyzer.exe E:\disksys.dmp 
[+] Analyzing code branching 
[=]   Loaded size.... 20481 
[+] Branch 
[=]   Target......... FFFFF80CCB379E7B 
[=]   Instruction.... E9 45 8B 59 08 
[+] Branch 
[=]   Target......... FFFFF80CC2DE1095 
[=]   Instruction.... E9 5F FF FF FF 
[+] Branch 
[=]   Target......... FFFFF80CC2DE10BE 
[=]   Instruction.... E9 77 FF FF FF 
[+] Branch 
[=]   Target......... FFFFF80CC2DE10F5 
[=]   Instruction.... EB 95 
[+] Branch 
[=]   Target......... FFFFF80CC2DE10F2 
[=]   Instruction.... E9 77 FF FF FF 
[+] Branch 
[=]   Target......... FFFFF80CC2DE2B5D 
[=]   Instruction.... E9 B7 19 00 00 
[+] Branch 
[=]   Target......... FFFFF80CC2DE2BC3 
[=]   Instruction.... E9 E4 19 00 00 

kd has a extension that allows you to look up the respective page table entry for any given

address (!pte). Let’s try this on the first target in the snippet:

0: kd> !pte FFFFF80CCB379E7B 
                                          VA fffff80ccb379e7b 
PXE at FFFF9BCDE6F37F80    PPE at FFFF9BCDE6FF0198    PDE at FFFF9BCDFE0332C8    PTE 
at FFFF9BFC06659BC8 
contains 00000000BFF08063  contains 0A000001DAF83863  contains 0000000000000000 
pfn bff08     ---DA--KWEV  pfn 1daf83    ---DA--KWEV  not valid 

Great! This confirms our suspicion that when a code section is sufficiently large, we can find

unaligned x86_64 instructions that yield unconditional branching without having to modify

the actual code. If we were to point the major function table entry to the given E9 45 8B 59

08  code sequence, every time the I/O handler is called, the code flow goes to the memory

address FFFFF80CCB379E7B, which is a memory region outside of the disk driver. This isn’t

the only instance of such an operation; the tool found 33 possible branch targets that reside

in unallocated memory. Thankfully, we can automate this process by calling

MmIsAddressValid and printing any invalid target. Now only one issue remains: how do we

forcefully take control over a specific address in memory?

Manipulating page table entries

Thanks to virtual address translation, modern operating systems use some kind of page table

system, which makes this quite trivial for us. All we have to do is find the respective page

table entry and manually mark it as valid. The page table implementation on Windows
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(Address translation are subject to change if your processor is from a different brand than

Intel) is thoroughly documented in the Intel manual:

With 4-level paging, linear address are translated using a hierarchy of in-memory paging
structures located using the contents of CR3. 4-level paging translates 48-bit linear addresses to
52-bit physical addresses.1 Although 52 bits corresponds to 4 PBytes, linear addresses are
limited to 48 bits; at most 256 TBytes of linear-address space may be accessed at any given
time. 4-level paging uses a hierarchy of paging structures to produce a translation for a linear
address. CR3 is used to locate the first paging-structure, the PML4 table.

Here are some of the relevant structs, documented in the intel manual:

union PML4_BASE { 
   std::uint64_t value; 
#pragma warning(disable : 4201)         // UB 
   struct { 
       std::uint64_t ignored_1 : 3; 
       std::uint64_t write_through : 1; 
       std::uint64_t cache_disable : 1; 
       std::uint64_t ignored_2 : 7; 
       std::uint64_t pml4_p : 40; 
       std::uint64_t reserved : 12; 
   }; 
};
struct HARDWARE_PTE                 
{   
   std::uint64_t Valid : 1;               
   std::uint64_t Write : 1;               
   std::uint64_t Owner : 1;               
   std::uint64_t WriteThrough : 1;        
   std::uint64_t CacheDisable : 1;        
   std::uint64_t Accessed : 1;            
   std::uint64_t Dirty : 1;               
   std::uint64_t LargePage : 1;           
   std::uint64_t Global : 1;              
   std::uint64_t CopyOnWrite : 1;         
   std::uint64_t Prototype : 1;           
   std::uint64_t reserved0 : 1;           
   std::uint64_t PageFrameNumber : 36;    
   std::uint64_t reserved1 : 4;           
   std::uint64_t SoftwareWsIndex : 11;    
   std::uint64_t NoExecute : 1;           
};
struct MMPTE 
{ 
   union 
   { 
       std::uint64_t   Long; 
       std::uint64_t   VolatileLong; 
       HARDWARE_PTE    Hard; 
       MMPTE_SOFTWARE  Soft; 
   }u; 
};
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simplicity’s sake, I will not cover address translation any further as it quite a long read. If you

want to know more, you are welcome to read Intel Manual Vol. 3A chapter 4.5, which covers

the specifics of 4-level paging; for the rest of the article, I will abstract that away for clarity.

When page table entry translation is done, we need to manually piece together a valid page

table entry so the processor does not page fault when control flow is forced to that memory

region. This can be done properly, by utilizing the page frame database, making sure that the

windows operating system actually knows that this memory page is being used and thus not

up for grabs or by simply manipulating the page table entry, causing a giant race condition as

we are about to showcase ;-).

Because page table entries must be referred to by a page directory entry (which must be

referred to by a page-directory-pointer-table entry, and so on), we need to initialize these

structures, if need be. The full paging hierarchy is shown, as follows:

Fig.1 - Formats of CR3 and Paging-Structure Entries with 4-Level Paging, Copyright: Intel

Here is a basic reconstruction of a page table entry:
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page_info.pte->u.Hard.Dirty = 1; 
page_info.pte->u.Hard.Accessed = 1; 
page_info.pte->u.Hard.Owner = 0; 
page_info.pte->u.Hard.Write = write ? 1 : 0; 
page_info.pte->u.Hard.NoExecute = execute ? 0 : 1; 
page_info.pte->u.Hard.Valid = 1; 

and a page directory entry:

page_info.pde->u.Hard.Dirty = 1; 
page_info.pde->u.Hard.Accessed = 1; 
page_info.pde->u.Hard.Owner = 0; 
page_info.pde->u.Hard.Write = 1; 
page_info.pde->u.Hard.NoExecute = 0; 
page_info.pde->u.Hard.Valid = 1; 

See? Extremely simple. That’s really all you have to do; you’re already in kernel mode, so you

can fetch the base address of the PML4 through the control register CR3

Demonstration

You can find a proof-of-concept hardware spoofer using this type of hook on my GitHub.

Make sure to follow me on Twitter and on GitHub to get notified every time I release projects

:-)

 

 

https://github.com/vmcall/owned_alignment

