
4/9/24, 1:39 AM Hypervisor Detection with SystemHypervisorDetailInformation | by Matt Hand | Medium

https://medium.com/@matterpreter/hypervisor-detection-with-systemhypervisordetailinformation-26e44a57f80e 1/8

Matt Hand September 15, 2023

Hypervisor Detection with
SystemHypervisorDetailInformation

medium.com/@matterpreter/hypervisor-detection-with-systemhypervisordetailinformation-26e44a57f80e

Matt Hand

I was recently doing some work that involved detecting whether or not the system my code
was executing on was virtualized and collecting some details about the hypervisor. There are
a number of documented ways of doing this (some more hacky than others), but the one that
caught my eye was using NtQueryInformationSystem() and the
SystemHypervisorDetailInformation information class. While the function itself is
documented, official documentation from Microsoft regarding the information class and
structure returned to the caller are notably missing.

As with most things in the undocumented Windows world, Geoff Chappell, may he rest in
peace, and SystemInformer (previously Process Hacker) both had information related to how
this class and structure are used. Additionally, the Hyper-V Hypervisor Top-Level Functional
Specification (TLFS) provides a solid reference on what features are exposed and how the
structure is populated.

Microsoft publishes and maintains a specification called the TLFS which describes a
hypervisor’s features which can be observed from a guest operating system (i.e., a
VM). These features are exposed to guests via the “Hv#1” interface, which will be
discussed shortly. This specification defines features of the hypervisor, outlines
datatypes used, provides a reference to supported hypercalls, and many other useful
pieces of information. The internal functions that Windows calls when the
SystemHypervisorDetailInformation information class is passed work almost
exclusively with TLFS-compliant hypervisors.

To supplement the great work done by these folks and others who have contributed
information publicly, I wanted to document the internal workings, “gotcha’s,” and information
returned in a central location for anyone needing to do hypervisor discovery using this
method.

https://medium.com/@matterpreter/hypervisor-detection-with-systemhypervisordetailinformation-26e44a57f80e
https://medium.com/@matterpreter?source=post_page-----26e44a57f80e--------------------------------
https://medium.com/@matterpreter?source=post_page-----26e44a57f80e--------------------------------
https://medium.com/@matterpreter?source=post_page-----26e44a57f80e--------------------------------
https://medium.com/@matterpreter?source=post_page-----26e44a57f80e--------------------------------
https://medium.com/@matterpreter?source=post_page-----26e44a57f80e--------------------------------
https://medium.com/@matterpreter?source=post_page-----26e44a57f80e--------------------------------
https://medium.com/@matterpreter?source=post_page-----26e44a57f80e--------------------------------
https://www.geoffchappell.com/index.htm
https://github.com/winsiderss/systeminformer

4/9/24, 1:39 AM Hypervisor Detection with SystemHypervisorDetailInformation | by Matt Hand | Medium

https://medium.com/@matterpreter/hypervisor-detection-with-systemhypervisordetailinformation-26e44a57f80e 2/8

NtQuerySystemInformation() and
SystemHypervisorDetailInformation

NtQuerySystemInformation() is a function exported by ntdll.dll that takes a value called a
system information class that describes the type of information to be retrieved and a pointer
to a structure which will hold the returned information. There are many information classes
with which you may already be familiar, such as SystemBasicInformation (0) and
SystemHandleInformation (0x10). The one most relevant to hypervisor identification is the
aptly named SystemHypervisorDetailInformation (0x9f).

Though no official documentation is provided by Microsoft, others have — and I’ll show you
how later — found that when called, a SYSTEM_HYPERVISOR_DETAIL_INFORMATION structure is
returned to the caller.

// https://github.com/winsiderss/phnt/blob/master/ntexapi.h
typedef _{
 ULONG Data[4];
} HV_DETAILS, *PHV_DETAILS;

 HV_DETAILS HvVendorAndMaxFunction; HV_DETAILS HypervisorInterface; HV_DETAILS
HypervisorVersion; HV_DETAILS HvFeatures; HV_DETAILS HwFeatures; HV_DETAILS
EnlightenmentInfo; HV_DETAILS ImplementationLimits;} SYSTEM_HYPERVISOR_DETAIL_INFORMATION,
*PSYSTEM_HYPERVISOR_DETAIL_INFORMATION;

Internally, when the syscall for NtQuerySystemInformation() occurs and control is transitioned
to the kernel, the information class identifier is evaluated in a switch case. If there is no
match found, which there isn’t for SystemHypervisorDetailInformation,
nt!ExpQuerySystemInformation() is called. This function contains yet another switch case,
this time matching on our value of 0x9f and calling nt!HvlQueryDetailInfo() where we’ll
begin digging in.

HvlQueryDetailInfo Internals

This function is responsible for populating the seven HV_INFORMATION structures that make up
the SYSTEM_HYPERVISOR_DETAIL_INFORMATION structure that is returned to the caller of
ntdll!NtQuerySystemInformation().

4/9/24, 1:39 AM Hypervisor Detection with SystemHypervisorDetailInformation | by Matt Hand | Medium

https://medium.com/@matterpreter/hypervisor-detection-with-systemhypervisordetailinformation-26e44a57f80e 3/8

Assuming that the appropriate length (0x70) has been received from the caller, the function
zeroes out v7, a temporary SYSTEM_HYPERVISOR_DETAIL_INFORMATION structure. Then a series
of seven internal functions with the “Hvi” prefix are called. These functions are each
responsible for populating one of the member HV_DETAIL structures with a specific piece (or
pieces) of information. These internal functions also build off of or reference each other in
many cases.

HviGetHypervisorVendorAndMaxFunction

Internally, this function first calls nt!HviIsAnyHypervisorPresent() which performs two
actions. First, it queries CPUID leaf 1 and checks if the most significant bit in ECX is 1. This
bit is referred to as the “hypervisor present bit” by Microsoft. If this set, the function then
queries the 0x40000001 leaf, which is used to obtain vendor-neutral interface identification
information.

In the context of the x86 cpuid instruction, leaves refer to groups of information that
can be retrieved. A caller moves a leaf identifier into the EAX register and executes
cpuid, at which point information from the corresponding leaf will be moved into EAX,
EBX, ECX, and EDX. The types and format of the data moved into these registers is
dependent on the leaf queried.

4/9/24, 1:39 AM Hypervisor Detection with SystemHypervisorDetailInformation | by Matt Hand | Medium

https://medium.com/@matterpreter/hypervisor-detection-with-systemhypervisordetailinformation-26e44a57f80e 4/8

Specifically, checks the value returned in EAX to see if it matches Xbnv, the interface
identifier for the Xbox Nanovisor, and returns false if so. Otherwise, it will return true. (Note:
this same logic can be found in nt!HviIsXboxNanovisorPresent()). We’ll see this function be
called at the beginning of every subsequent function but we’ll only discuss it here.

So now that HviGetHypervisorVendorAndMaxFunction() knows that the system is virtualized, it
can continue its execution. It queries leaf 0x40000000 which returns two pieces of information
— the maximum function and the vendor ID. There are a number of known vendor IDs
(Hyper-V’s being “Microsoft Hv”) but remember that a hypervisor developer can set this
value to whatever they’d like so it can’t be assumed to be any of the known IDs in all cases.
Even Microsoft recommend only using the information stored here for “reporting and
diagnostic purposes.” The maximum function value is far more useful to us. This value tells
us up to what leaf number we can query. While we’re guaranteed to have at least up to
0x4000005 on Microsoft hypervisors, we need to get this maximum value so that we’re not
querying higher than what is supported by the current VMM. After completing this query, EAX
contains the maximum value and EBX, ECX, and EDX contain the vendor ID.

HviGetHypervisorInterface

The next function called , nt!HviGetHypervisorInterface(), queries CPUID leaf 0x40000001
after first calling nt!HviIsAnyHypervisorPresent(). The value stored in EAX is a vendor-
neutral interface identifier. On TLFS-conforming hypervisors, this will be “Hv#1” and EBX,
ECX, and EDX are reserved. Hypervisors conforming to this interface also guarantee the
availability and structure of leaves 0x40000002–0x40000006.

On nonconforming hypervisors, this can be anything. For instance, Alex Ionescu’s
SimpleVisor project sets this value to “Shv ”.

HviGetHypervisorVersion — 0x40000002

In the next function, the kernel calls a new internal function:
HviIsHypervisorMicrosoftCompatible(). This function is simply a wrapper for
HviGetHypervisorInterface() that returns a boolean based on whether the hypervisor
reports “Hv#1” as its interface identifier.

https://twitter.com/aionescu/status/844665151664021504
https://github.com/ionescu007/SimpleVisor/blob/989d33b1bc6569965d7aad3bd50a8d35fa4c359e/shvvp.c#L43

4/9/24, 1:39 AM Hypervisor Detection with SystemHypervisorDetailInformation | by Matt Hand | Medium

https://medium.com/@matterpreter/hypervisor-detection-with-systemhypervisordetailinformation-26e44a57f80e 5/8

If this function returns true, HviGetHypervisorVersion() queries leaf 0x40000002 to get the
hypervisor’s version information. The CPUID instruction will set EAX to the build number and
bits 31–16 of EBX to the major version with bits 15–0 containing the minor version. As an
example, Hyper-V would return something like:

: 10
: 0
: 22000

HviGetHypervisorFeatures — 0x40000003

Here is where things start to get a little messy. This function again runs
HviIsHypervisorMicrosoftCompatible(), querying leaf 0x40000003 if true. This leaf will return
bitmasks in all registers that correlate to different sets of hypervisor features.

EAX and EBX, this will correspond to bits 31–0 (access to virtual model specific registers
(MSRs)) and 63–32 (access to hypercalls) of the HV_PARTITION_PRIVILEGE_MASK structure
respectively. At the time of this writing, Microsoft documents this structure and its members.
In the context of this structure, a partition simply means a virtualized system (or VM).

The bitmask stored in ECX is a bit less utilized. The features assigned to each bit are
documented in the TLFS. Currently, there are only 4 features listed:

— used for performance monitoring regardless of power state
— a component of Control-flow Enforcement Technology (CET)
— used for measuring and monitoring CPU workloads
— the guest has the capability to handle or manage exceptions that occur during its
operation

Lastly, the bitmap stored in EDX is very similar to that in ECX. Microsoft documents what
features these bits map to in the TLFS, but details regarding these features are scarce. I’ve
found Alex Ionescu’s Hyper-V Development Kit (hdv) to be a helpful starting point in many
cases.

https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/datatypes/hv_partition_privilege_mask
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/feature-discovery#hypervisor-feature-identification---0x40000003
https://github.com/ionescu007/hdk
https://github.com/ionescu007/hdk/blob/319a15471d11057dfec98a7a5b7622fe99eefd05/hvgdk.h#L4151

4/9/24, 1:39 AM Hypervisor Detection with SystemHypervisorDetailInformation | by Matt Hand | Medium

https://medium.com/@matterpreter/hypervisor-detection-with-systemhypervisordetailinformation-26e44a57f80e 6/8

HviGetHardwareFeatures — 0x40000006

HviGetHardwareFeatures() works with a feature bitmask just like the previous function. First,
though, it calls HviGetHypervisorVendorAndMaxFunction() and checks to make sure the value
returned in EAX (the maximum supported leaf) is at least 0x40000006. If this check passes,
it queries CPUID leaf 0x40000006 which returns a bitmask of hardware features in EAX.
EBX, ECX, and EDX are reserved.

The hardware features whose states are described in this bitmask are documented in the
TLFS, but just barely. More generalized documentation for features such as the ACPI
Watchdog Action Table (WDAT) or High Precision Event Time (HPAT) are available from
external sources. It may be worth noting that you can expect the SLAT bit (EAX[3]) to be set
on virtually every hypervisor.

HviGetEnlightenmentInformation — 0x40000004

This function again calls HviIsHypervisorMicrosoftCompatible() to check if the interface
identifier is “Hv#1” and queries leaf 0x40000004 if so. This leaf contains information for the
guest operating system to ensure optimal performance under the hypervisor.

After execution of the cpuid instruction, EAX will contain yet another bitmask. This bitmask is
where the hypervisor’s recommendations to the guest OS are primarily housed. Such
recommendations include using a hypercall for an address switch rather than a mov to CR3
and whether or not the guest should use the enlightened VMCS interface.

The value stored in EBX is the recommended number of attempts the guest OS should retry
on a spinlock failure before notifying the hypervisor. 0xFFFFFFFF means that the guest
should not notify.

Lastly, bits 6–0 of ECX report the physical address width reported by the system’s physical
processor. This is the exact same value as MAXPHYADDR, the physical address width. This
appears to be the same thing as what is returned in EAX[7–0] when querying leaf
0x80000008, just evaluating 1 bit fewer...

HviGetImplementationLimits — 0x40000005

The last function called by HvlQueryDetailInfo(), HviGetImplementationLimits(), again
checks that the interface ID is “Hv#1” before querying leaf 0x40000005. This leaf is one of
the more simple ones as registers EAX, EBX, ECX only represent the maximum numbers of
supported virtual processors, virtual processors, and physical interrupt vectors (used for
interrupt remapping) respectively.

https://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0a-b18336565f5b/HardwareWDTSpec.doc
https://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0a-b18336565f5b/HardwareWDTSpec.doc
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-spin-locks
https://www.youtube.com/watch?v=LQQnKo4_udw
https://blog.pankajgarg.com/life-of-interrupts-remapping/#:~:text=around%20interrupt%20remapping.-,Interrupt%20Remapping,-Interrupt%20remapping%20is

4/9/24, 1:39 AM Hypervisor Detection with SystemHypervisorDetailInformation | by Matt Hand | Medium

https://medium.com/@matterpreter/hypervisor-detection-with-systemhypervisordetailinformation-26e44a57f80e 7/8

Recap

To help tie everything together, I’ve created a graphic to represent the internal flow of these
functions and how they relate to one another.

But what about the other leaves?

You may have noticed that the maximum leaf value returned by
HviGetHypervisorVendorAndMaxFunction() may be higher than what HvlQueryDetailInfo()
queries, 0x40000006. Frankly, I’m not entirely sure why Microsoft chose to cut it here,

4/9/24, 1:39 AM Hypervisor Detection with SystemHypervisorDetailInformation | by Matt Hand | Medium

https://medium.com/@matterpreter/hypervisor-detection-with-systemhypervisordetailinformation-26e44a57f80e 8/8

especially when leaves 0x40000009 and 0x4000000A are documented in the TLFS. If you
know the answer, please let me know. We’ll just have to manually query those leaves
ourselves for now �

Reimplementation

Due to the undocumented nature of ntdll!NtQuerySystemInformation() and the internal
function, the structures with which we’re working, and the data returned, I’ve created a basic
C++ class to emulate the behavior of nt!HvlQueryDetailInfo(). This should allow anyone
who needs the behavior and output of NtQuerySystemInformation() but isn’t in love with
using an undocumented function an alternative that includes a few quality-of-life
improvements.

https://github.com/matterpreter/cpuid/

References & Additional Reading

Acknowledgements

Thank you to Satoshi Tanda and Sina Karvandi for their reviews of the draft of this post.

https://github.com/matterpreter/cpuid/
https://twitter.com/standa_t
https://twitter.com/Intel80x86

