
1/18

Hypervisor enforced security policies for NTOS, secure kernel and
a child partition

tandasat.github.io/blog/2024/02/12/hyper-v-configs.html

Feb 12, 2024

This post aims to clarify security policies implemented by the Windows hypervisor for the root partition VTL 0
(NTOS), 1 (secure kernel), and a child partition (guest VM) by comparing their VMCSes on an Intel platform.

Summary

I start with the summary of my take, as the rest of this article is fairly “dry”.

The most interesting difference is VTL 1 having writable code. I heard of this but never verified it myself. I
knew VTL 1 mapped UEFI runtime service code with the writable permission when the Memory Attributes
Table was unavailable, but my target system did have it and properly implemented W^X (ref). I am unclear
why code is left writable almost entirely. Similarly, it is questionable that IA32_EFER.NXE is not set for the
VTL 1 guest.

The other intriguing part is largely accessible IO ports from VTL 0. I would have to study the functionality of
these IO ports a bit more to be confident to say these are ok in this way. You may find the list of documented
IO ports in volume 1 of the PCH specification, for example:

On MSRs, besides the undocumented MSRs, it is worth recreating the list on newer models as it might
change depending on the existence of physical MSRs. Additionally, IA32_SPEC_CTRL being writable from the
child partition is interesting. Could not a guest disable mitigation features and leak information? I would be
curious to know.

https://tandasat.github.io/blog/2024/02/12/hyper-v-configs.html
https://uefi.org/specs/UEFI/2.10/04_EFI_System_Table.html#efi-memory-attributes-table
https://github.com/tandasat/List-UEFI-Configuration-Tables

2/18

On CR4, it is interesting that more bits are intercepted and shadowed for VTL 0 than the child partition. I
cannot think of a reason off the top of my head.

It may be good security research to compare these with other hypervisor-protected systems. Is there a
similar software architecture with a different setup, and would that imply overlooked security holes on that
system or Windows? In addition to that, being intercepted by a hypervisor does not mean there is no chance
of a bug; it is an attack surface to be inspected.

The rest of the post analyzes raw data.

Setup

I checked VMCS configurations on Windows 22H2 on the 9th generation Intel processor. The guest partition
is Windows 22H2 with Hyper-V configuration version 11.0. HVCI is enabled for the root partition and disabled
for the guest partition.

Comparison

MSRs

The lists of MSRs accessible without interception are the same between VTL 0 and 1. The child partition can
access only a subset of these MSRs.

Details
This is a list of writable MSRs for VTL 0 and 1. Ones writable from the child partition are marked with (G).

0x0 - IA32_P5_MC_ADDR
0x48 - IA32_SPEC_CTRL (G)
0x49 - IA32_PRED_CMD (G)
0xc5 - IA32_PMC4
0xc6 - IA32_PMC5
0xc7 - IA32_PMC6
0xc8 - IA32_PMC7
0xe2 - MSR_PKG_CST_CONFIG_CONTROL
0xe3 -
0xe7 - IA32_MPERF
0xe8 - IA32_APERF
0x10b - IA32_FLUSH_CMD (G)
0x17b - IA32_MCG_CTL
0x17f - MSR_ERROR_CONTROL
0x18a - IA32_PERFEVTSEL4
0x18b - IA32_PERFEVTSEL5

https://gist.github.com/tandasat/3a60ee4cc5b9519cadf60393814918e9

3/18

0x18c - IA32_PERFEVTSEL6
0x18d - IA32_PERFEVTSEL7
0x198 - IA32_PERF_STATUS
0x199 - IA32_PERF_CTL
0x19a - IA32_CLOCK_MODULATION
0x19b - IA32_THERM_INTERRUPT
0x19c - IA32_THERM_STATUS
0x19d - MSR_THERM2_CTL
0x1a2 - MSR_TEMPERATURE_TARGET
0x1ac - MSR_TURBO_POWER_CURRENT_LIMIT
0x1ad - MSR_TURBO_RATIO_LIMIT
0x1b0 - IA32_ENERGY_PERF_BIAS
0x1b1 - IA32_PACKAGE_THERM_STATUS
0x1b2 - IA32_PACKAGE_THERM_INTERRUPT
0x1fa - IA32_DCA_0_CAP
0x1fc - MSR_POWER_CTL
0x30c - IA32_FIXED_CTR3
0x30d - MSR_IQ_COUNTER1
0x30e - MSR_IQ_COUNTER2
0x30f - MSR_IQ_COUNTER3
0x310 - MSR_IQ_COUNTER4
0x311 - MSR_IQ_COUNTER5
0x312 -
0x313 -
0x314 -
0x315 -
0x316 -
0x317 -
0x318 -
0x329 - MSR_PERF_METRICS
0x4c5 - IA32_A_PMC4
0x4c6 - IA32_A_PMC5
0x4c7 - IA32_A_PMC6
0x4c8 - IA32_A_PMC7
0x601 - MSR_VR_CURRENT_CONFIG
0x609 -
0x60a - MSR_PKGC3_IRTL
0x60b - MSR_PKGC_IRTL1
0x60c - MSR_PKGC_IRTL2
0x610 - MSR_PKG_POWER_LIMIT
0x615 - PLATFORM_POWER_LIMIT

4/18

0x61e - MSR_PCIE_PLL_RATIO
0x620 - UNCORE_RATIO_LIMIT
0x621 - MSR_UNCORE_PERF_STATUS
0x64f - MSR_CORE_PERF_LIMIT_REASONS
0x65c - MSR_PLATFORM_POWER_LIMIT
0x6b0 - MSR_GRAPHICS_PERF_LIMIT_REASONS
0x6b1 - MSR_RING_PERF_LIMIT_REASONS
0x772 - IA32_HWP_REQUEST_PKG
0x773 - IA32_HWP_INTERRUPT
0x774 - IA32_HWP_REQUEST
0x777 - IA32_HWP_STATUS
0x17d1 - IA32_HW_FEEDBACK_CONFIG
0x17d2 - IA32_THREAD_FEEDBACK_CHAR
0x17da - IA32_HRESET_ENABLE
0xc0000100 - IA32_FS_BASE (G)
0xc0000101 - IA32_GS_BASE (G)
0xc0000102 - IA32_KERNEL_GS_BASE (G)

IO ports

The lists of IO ports accessible without interception are different between 3 configurations.

For VTL 0, all ports except below are accessible:
0x20, 0x21, 0xa0, 0xa1 - Master and Slave PIC (reference)
0x64 - PS/2 Controller (reference)
0xcf8, 0xcfc-0xcff - PCI config address and data (reference)
0x1805 - (upper) PM1 control registers

For VTL 1, all ports are accessible.
For the child partition, none of the ports are accessible.

Memory

Below are a few observations with a quick look.

For both VTL 0 and 1, translations are identity-mapped.
For VTL 1, code is almost entirely writable even if HVCI is enabled for VTL 0.
For the child partition, translations are simple offsets within a few large blocks of physical memory.

For example, when GPA 0x0 is mapped to PA 0x224200000, GPA 0x4600000 is mapped to
0x228800000 (0x224200000 + 0x4600000).

Control fields

Pin-based VM-execution controls

https://wiki.osdev.org/PIC
https://wiki.osdev.org/%228042%22_PS/2_Controller
https://wiki.osdev.org/PCI

5/18

There is no difference between the 3 configurations.

Details
“1” means the feature is enabled.

VTL 0 VTL 1 Child Bits

1 1 1 0 External-interrupt exiting

1 1 1

1 1 1

1 1 1 3 NMI exiting

1 1 1

1 1 1 5 Virtual NMIs

0 0 0 6 Activate VMX preemption timer

0 0 0 7 Process posted interrupts

Primary processor-based VM-execution controls

There are a few differences.

for VTL 1, “Interrupt-window exiting” is enabled
for the child partition, MWAIT, MONITOR, and MOV-DR are intercepted
for the child partition, all IO port access are intercepted

Details
“1” means the feature is enabled.

VTL 0 VTL 1 Child Bits

0 0 0

1 1 1

0 1 0 2 Interrupt-window exiting 🔔

1 1 1 3 Use TSC offsetting

1 1 1

1 1 1

6/18

VTL 0 VTL 1 Child Bits

1 1 1

1 1 1 7 HLT exiting

1 1 1

0 0 0 9 INVLPG exiting

0 0 1 10 MWAIT exiting 🔔

1 1 1 11 RDPMC exiting

0 0 0 12 RDTSC exiting

1 1 1

1 1 1

0 0 0 15 CR3-load exiting

0 0 0 16 CR3-store exiting

0 0 0 17 Activate tertiary controls

0 0 0

0 0 0 19 CR8-load exiting

0 0 0 20 CR8-store exiting

1 1 1 21 Use TPR shadow Setting

0 0 0 22 NMI-window exiting

0 0 1 23 MOV-DR exiting 🔔

0 0 1 24 Unconditional I/O exiting 🔔

1 1 0 25 Use I/O bitmaps 🔔

1 1 1

0 0 0 27 Monitor trap flag

1 1 1 28 Use MSR bitmaps

0 0 1 29 MONITOR exiting 🔔

0 0 0 30 PAUSE exiting

7/18

VTL 0 VTL 1 Child Bits

1 1 1 31 Activate secondary controls

Secondary processor-based VM-execution controls

There are a few differences:

For the child partition, “WBINVD” is intercepted.
“Mode-based execute control for EPT” is enabled only for VTL 0. This is because VTL 1 does not have
as strict memory protection as VTL 0, and the child partition (VM) was not configured to enable HVCI.

Details
“1” means the feature is enabled.

VTL 0 VTL 1 Child Bits

1 1 1 0 Virtualize APIC accesses

1 1 1 1 Enable EPT

1 1 1 2 Descriptor-table exiting

1 1 1 3 Enable RDTSCP

0 0 0 4 Virtualize x2APIC mode

1 1 1 5 Enable VPID

0 0 1 6 WBINVD exiting 🔔

1 1 1 7 Unrestricted guest

0 0 0 8 APIC-register virtualization

0 0 0 9 Virtual-interrupt delivery

0 0 0

0 0 0 11 RDRAND exiting

1 1 1 12 Enable INVPCID

0 0 0 13 Enable VM functions

0 0 0 14 VMCS shadowing

1 1 1 15 Enable ENCLS exiting

8/18

VTL 0 VTL 1 Child Bits

0 0 0 16 RDSEED exiting

0 0 0 17 Enable PML

0 0 0 18 EPT-violation #VE

1 1 1 19 Conceal VMX from PT

1 1 1 20 Enable XSAVES/XRSTORS

0 0 0 21 PASID translation

1 0 0 22 Mode-based execute control for EPT 🔔

0 0 0 23 Sub-page write permissions for EPT

0 0 0 24 Intel PT uses guest physical addresses

0 0 0 25 Use TSC scaling

0 0 0 26 Enable user wait and pause

0 0 0 27 Enable PCONFIG

0 0 0 28 Enable ENCLV exiting

0 0 0

0 0 0 30 VMM bus-lock detection

0 0 0 31 Instruction timeout

Primary VM-exit controls

For the child partition, “Load IA32_PAT” is enabled.

Details
“1” means the feature is enabled.

VTL 0 VTL 1 Child Bits

1 1 1

1 1 1

1 1 1 2 Save debug controls

1 1 1

9/18

VTL 0 VTL 1 Child Bits

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 9 Host address-space size

1 1 1

1 1 1

0 0 0 12 Load IA32_PERF_GLOBAL_CTRL

1 1 1

1 1 1

1 1 1 15 Acknowledge interrupt on exit

1 1 1

1 1 1

0 0 0 18 Save IA32_PAT

0 0 1 19 Load IA32_PAT 🔔

0 0 0 20 Save IA32_EFER

0 0 0 21 Load IA32_EFER

0 0 0 22 Save VMX-preemption timer value

0 0 0 23 Clear IA32_BNDCFGS

1 1 1 24 Conceal VMX from PT

0 0 0 25 Clear IA32_RTIT_CTL

0 0 0 26 Clear IA32_LBR_CTL

0 0 0 27 Clear UINV

0 0 0 28 Load CET state

10/18

VTL 0 VTL 1 Child Bits

0 0 0 29 Load PKRS

0 0 0 30 Save IA32_PERF_GLOBAL_CTL

0 0 0 31 Activate secondary controls

VM-entry controls

For the child partition, “Load IA32_PAT” is enabled.

Details
“1” means the feature is enabled.

VTL 0 VTL 1 Child Bits

1 1 1

1 1 1

1 1 1 2 Load debug controls

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 9 IA-32e mode guest

0 0 0 10 Entry to SMM

0 0 0 11 Deactivate dualmonitor treatment

1 1 1

0 0 0 13 Load IA32_PERF_GLOBAL_CTRL

0 0 1 14 Load IA32_PAT 🔔

0 0 0 15 Load IA32_EFER

0 0 0 16 Load IA32_BNDCFGS

11/18

VTL 0 VTL 1 Child Bits

1 1 1 17 Conceal VMX from PT

0 0 0 18 Load IA32_RTIT_CTL

0 0 0 19 Load UINV

0 0 0 20 Load CET state

0 0 0 21 Load guest IA32_LBR_CTL

0 0 0 22 Load PKRS

ENCLS-exiting bitmap

For the child partition, all ENCLS leaf functions are intercepted.

Details
“1” means the leaf function is intercepted.

VTL 0 VTL 1 Child Bits

0 0 1 ENCLS[ECREATE]

0 0 1 ENCLS[EADD]

1 1 1 ENCLS[EINIT]

0 0 1 ENCLS[EREMOVE]

0 0 1 ENCLS[EDBGRD]

0 0 1 ENCLS[EDBGWR]

0 0 1 ENCLS[EEXTEND]

0 0 1 ENCLS[ELDB]

0 0 1 ENCLS[ELDU]

0 0 1 ENCLS[EBLOCK]

0 0 1 ENCLS[EPA]

0 0 1 ENCLS[EWB]

0 0 1 ENCLS[ETRACK]

0 0 1 ENCLS[EAUG]

12/18

VTL 0 VTL 1 Child Bits

0 0 1 ENCLS[EMODPR]

0 0 1 ENCLS[EMODT]

0 0 1 ENCLS[ERDINFO]

0 0 1 ENCLS[ETRACKC]

0 0 1 ENCLS[ELDBC]

0 0 1 ENCLS[ELDUC]

Exception bitmap

There is no difference between the 3 configurations.

Details
“1” means the exception is intercepted.

VTL 0 VTL 1 Child Bits

0 0 0 Divide Error Exception

1 1 1 Debug Exception

1 1 1 NMI Interrupt

0 0 0 Breakpoint Exception

0 0 0 Overflow Exception

0 0 0 BOUND Range Exceeded Exception

0 0 0 Invalid Opcode Exception

0 0 0 Device Not Available Exception

0 0 0 Double Fault Exception

0 0 0 Coprocessor Segment Overrun

0 0 0 Invalid TSS Exception

0 0 0 Segment Not Present

0 0 0 Stack Fault Exception

0 0 0 General Protection Exception

13/18

VTL 0 VTL 1 Child Bits

0 0 0 Page-Fault Exception

0 0 0

0 0 0 x87 FPU Floating-Point Error

0 0 0 Alignment Check Exception

1 1 1 Machine-Check Exception

0 0 0 SIMD Floating-Point Exception

0 0 0 Virtualization Exception

0 0 0 Control Protection Exception

CR0 guest/host mask

There is no difference between the 3 configurations.

Details
“1” means access to the bit position is intercepted and shadowed.

VTL 0 VTL 1 Child Bits

1 1 1 0 Protection Enable

0 0 0 1 Monitor Coprocessor

0 0 0 2 Emulation

0 0 0 3 Task Switched

0 0 0 4 Extension Type

1 1 1 5 Numeric Error

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

14/18

VTL 0 VTL 1 Child Bits

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 16 Write Protect

1 1 1

1 1 1 18 Alignment Mask

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 29 Not Write-through

1 1 1 30 Cache Disable

1 1 1 31 Paging

CR4 guest/host mask

For VTL 0, several bits are intercepted and shadowed.

Details
“1” means access to the bit position is intercepted and shadowed.

VTL 0 VTL 1 Child Bits

15/18

VTL 0 VTL 1 Child Bits

1 0 0 0 Virtual-8086 Mode Extensions 🔔

1 0 0 1 Protected-Mode Virtual Interrupts 🔔

1 0 0 2 Time Stamp Disable 🔔

1 0 0 3 Debugging Extensions 🔔

1 1 1 4 Page Size Extensions

1 1 1 5 Physical Address Extension

1 1 1 6 Machine-Check Enable

0 0 0 7 Page Global Enable

0 0 0 8 Performance-Monitoring Counter Enable

1 0 0 9 Operating System Support for FXSAVE and FXRSTOR instructions 🔔

1 0 0 10 Operating System Support for Unmasked SIMD Floating-Point Exceptions 🔔

1 1 1 11 User-Mode Instruction Prevention

1 1 1 12 57-bit linear addresses

1 1 1 13 VMX-Enable Bit

1 1 1 14 SMX-Enable Bit

1 1 1

1 1 1 16 FSGSBASE-Enable Bit

1 1 1 17 PCID-Enable Bit

1 1 1 18 XSAVE and Processor Extended States-Enable Bit

1 1 1 19 Key-Locker-Enable Bit

1 1 1 20 SMEP-Enable Bit

1 1 1 21 SMAP-Enable Bit

1 1 1 22 Enable protection keys for user-mode pages

1 1 1 23 Control-flow Enforcement Technology

1 1 1 24 Enable protection keys for supervisor-mode pages

16/18

VTL 0 VTL 1 Child Bits

1 1 1 25 User Interrupts Enable Bit

Call for actions

Besides the open questions I made above, there are opportunities to find new vulnerabilities in the Windows
hypervisor if you extend hvext.js for AMD platforms. I discovered two vulnerabilities specific to the Intel
platforms while writing the tool, so I would not be surprised if similar issues exist on AMD platforms.

Reference: steps to get them

1. Enable hypervisor debugging and get hvext.js working.

2. Reduce the number of logical processors to 1 and reboot. This makes VTL 0, 1 and guest transitions
tremendously clearer.

> bcdedit /set numproc 1

3. To break on VMCS switching, we need to set breakpoints on the all VMPTRLD instructions in the
hypervisor image. For this, get the range of hypervisor’s .text section first.

kd> lm
start end module name
fffff863`87673000 fffff863`87a75000 hv (no symbols)

kd> !dh -s fffff863`87673000
...
SECTION HEADER #9
 .text name
 19C0C4 virtual size
 200000 virtual address
 19D000 size of raw data
...

4. Then, search the VMPTRLD instructions in the range with the # command.

kd> # vmptrld fffff863`87673000+200000 L 19C0C4
...

https://github.com/tandasat/hvext
https://github.com/tandasat/CVE-2023-36427
https://github.com/tandasat/CVE-2024-21305
https://tandasat.github.io/blog/windows/2023/03/21/setting-up-kdnet-over-usb-eem-for-bootloader-and-hyper-v-debugging.html

17/18

5. Finally, set a breakpoint for each discovered instruction.

Note that there were 41 instances of the VMPTRLD instructions in the version I tested, and Windbg could
set only up to 30 breakpoints. However, this was not a big issue as only 4 of them were used during the
regular operation. To figure out which instructions are used, you can trace execution of them instead of
breaking in each time with commands like this:

Details

18/18

; Offsets are valid only for the version 10.0.22621.2861

bp hv+0x20af68 ".echo ' 0'; dp rcx+188h l1; gc"
bp hv+0x2123cf ".echo ' 1'; dp rcx+188h l1; gc"
bp hv+0x216c2e ".echo ' 2'; dp rcx+188h l1; gc"
bp hv+0x21a174 ".echo ' 3'; dp rcx+188h l1; gc"
bp hv+0x22093b ".echo ' 4'; dp rcx+188h l1; gc" ; used to switch VTL 0 and 1
bp hv+0x22b377 ".echo ' 5'; dp rcx+188h l1; gc"
bp hv+0x22c1ba ".echo ' 6'; dp rcx+188h l1; gc"
bp hv+0x22c6f4 ".echo ' 7'; dp rcx+188h l1; gc"
bp hv+0x22cd17 ".echo ' 8'; dp rcx+188h l1; gc" ; used to switch guest and VTL 0
bp hv+0x239401 ".echo ' 9'; dp rsp+30h l1; gc"
bp hv+0x248112 ".echo '10'; dp rcx+188h l1; gc"
bp hv+0x25589a ".echo '11'; dp rcx+188h l1; gc"
bp hv+0x2559ae ".echo '12'; dp rcx+188h l1; gc"
bp hv+0x33e1d3 ".echo '13'; dp rcx+188h l1; gc"
bp hv+0x33e2f5 ".echo '14'; dp rcx+188h l1; gc"
bp hv+0x33ead1 ".echo '15'; dp rcx+188h l1; gc"
bp hv+0x340e8d ".echo '16'; dp r8+118h l1; gc"
bp hv+0x340eed ".echo '17'; dp rsp+58h l1; gc"
bp hv+0x3410e2 ".echo '18'; dp rcx+118h l1; gc"
bp hv+0x341a6e ".echo '19'; dp rbp+48h l1; gc"
bp hv+0x347146 ".echo '20'; dp rcx+29A20h l1; gc" ; used only for the first launch
bp hv+0x34960c ".echo '21'; dp rcx+188h l1; gc"
bp hv+0x34971f ".echo '22'; dp rcx+188h l1; gc"
bp hv+0x34985d ".echo '23'; dp rcx+188h l1; gc"
bp hv+0x349acd ".echo '24'; dp r8+188h l1; gc"
bp hv+0x349c95 ".echo '25'; dp rcx+188h l1; gc"
bp hv+0x34b8b8 ".echo '26'; dp r8+118h l1; gc"
bp hv+0x34b8f9 ".echo '27'; dp rsp+58h l1; gc"
bp hv+0x34ba7f ".echo '28'; dp rcx+188h l1; gc"
bp hv+0x34baed ".echo '29'; dp rsp+50h l1; gc"
bp hv+0x34cf28 ".echo '30'; dp rcx+188h l1; gc"
bp hv+0x34f3f4 ".echo '31'; dp rax+188h l1; gc"
bp hv+0x34f4e4 ".echo '32'; dp rax+188h l1; gc"
bp hv+0x34feae ".echo '33'; dp rcx+188h l1; gc"
bp hv+0x352070 ".echo '34'; dp rcx+188h l1; gc"
bp hv+0x352100 ".echo '35'; dp rcx+188h l1; gc"
bp hv+0x3521d9 ".echo '36'; dp rcx+188h l1; gc"
bp hv+0x352b9d ".echo '37'; dp rcx+188h l1; gc"
bp hv+0x352bb0 ".echo '38'; dp rdx+0B0h l1; gc"
bp hv+0x3541a5 ".echo '39'; dp rcx+188h l1; gc" ; used only during start up
bp hv+0x391b62 ".echo '40'; dp rcx+188h l1; gc"

