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ABSTRACT 

Abstract - This paper reexamines the sophisticated cyberattack mechanisms of the Stuxnet worm with a focus on 
present-day security environments and vulnerabilities. Our analysis begins with an examination of Stuxnet's 
operational tactics as a foundation for discussing contemporary exploits that target emulated read-only filesystems 
and NTFS vulnerabilities. Since 2011, updates to the Windows security framework, including Device Guard Signature 
Enforcement (DSE) and Hypervisor-protected Code Integrity (HVCI), have reshaped attack strategies. Our research 
introduces an innovative method that leverages overlooked vulnerabilities in emulated filesystems, allowing 
attackers to discreetly install and maintain harmful software, mirroring the stealthy nature of Stuxnet. We also 
uncover new NTFS glitches that allow attackers to erase their tracks while retaining persistence in the system. The 
paper develops new Indicators of Compromise (IOCs) that detect these sophisticated methods. By drawing parallels 
to Stuxnet and adapting its methodologies to contemporary technologies, our paper provides insights into lesser-
known filesystem vulnerabilities, emphasizing their implications and the challenges they pose to security defenses. 
Index Terms - Evasion Engineering, Malware Development, Kernel Driver Exploitation 
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I .  INTRODUCTION 

The battlefield between cyber attackers and defenders has greatly changed because of the advancement and 
improvement of Endpoint Detection and Response (EDR) capabilities in the constantly changing field of 
cybersecurity. Sophisticated behavioral detection algorithms and Event Tracing for Windows (EtwTI) are currently 
used by advanced EDR systems to stop malicious activity. As a result, attackers are now forced to shift their tactics to 
more covert kernel-mode exploits to discover and neutralize threats that operate within the user-mode. 

The shift to kernel-level strategies has made the development of strong defenses necessary to safeguard the 
operating system's integrity on a deeper level. Microsoft has released several potent security updates targeted at 
strengthening the kernel against such breaches in response to this changing threat scenario. These initiatives include 
Hypervisor-protected Code Integrity (HVCI) and Virtualization-Based Security (VBS), which provide strong 
protections against driver exploitation and illegal kernel tampering. 

Moreover, Microsoft has put in place the Certificate Revocation List (CRL) and Driver Blocklist tools to explicitly 
mitigate the risks related to rogue drivers. By preventing known malicious or compromised drivers from being 
loaded into the system, these technologies greatly reduce the attack surface that adversaries can exploit. 

The capacity of EDR solutions to detect previously concealed actions has significantly improved with the addition of 
EtwTI. EtwTI allows security solutions to detect and react to unusual behaviors and patterns that point to malicious 
intent, especially when they involve direct kernel interactions. This is accomplished by monitoring and analyzing 
comprehensive telemetry data. 

This study examines how the threat landscape has changed because of these improved security measures, 
compelling attackers to modify their strategies. We examine how well-suited HVCI, VBS, and related technologies are 
for thwarting driver- and kernel-based assaults and assess how they affect the security posture of contemporary 
computing environments. This study attempts to provide a thorough overview of current trends in cybersecurity 
defenses and the continuous game of cat and mouse between cyber adversaries and defenders by looking at recent 
breakthroughs and their ramifications. 
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II .  BACKGROUND 

This section details the backend concepts from the Windows NTFS documentation and previous research on the 
Stuxnet worm that are relevant to the ideas behind this paper. 

A. THE STUXNET WORM 

HIGH-LEVEL OVERVIEW 

 

Figure 1: Stuxnet - High Level Structure 

INITIAL ACCESS VIA REMOVABLE MEDIA 

The initial method used by Stuxnet to infect the first workstations was highly sophisticated, utilizing cleverly 
designed mechanisms. It principally relied on removable media, specifically USB flash drives, to carry its harmful 
payload. This approach was intentionally developed to circumvent network-based security measures and directly 
infiltrate air-gapped systems that are frequently present in crucial industrial settings. Below is a comprehensive 
analysis of how Stuxnet began its process of infecting and the specific software it installed on the affected 
workstations. 



DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR 

 

  © 2024 Alessandro Magnosi (@klezVirus)    

WHY USB DRIVES 

Many of the target environments, such as nuclear facilities and industrial control systems, operated in secure 
networks disconnected from the internet, commonly known as air-gapped networks. USB drives, often used to 
transfer files between secured and non-secured networks, presented a viable entry point. 

Another interesting reason is that USB drives are commonly used in industrial settings for updating software, 
transferring configuration files, or moving data between systems. Their frequent use and the trust placed in them 
made USBs an ideal vector for stealthy malware introduction. 

Moreover, at the time, Windows had a significant vulnerability (CVE-2010-2568) related to the way shortcut files 
(.lnk) were processed. This allowed Stuxnet to execute automatically when the drive's contents were viewed in 
Windows Explorer, without any additional user interaction, making it a highly effective delivery method. 

FALLBACK STRATEGIES 

While USB drives were an effective initial attack vector, Stuxnet also incorporated additional methods to spread 
within a network environment, ensuring its propagation even in the absence of USB drive usage. 

These strategies involved the exploitation of several known Windows vulnerabilities to spread laterally across 
networked computers. This included the infamous MS08-067 vulnerability, which had been widely exploited by 
other malware like Conficker, and MS10-061, a Printer Spooler impersonation vulnerability allowing an arbitrary 
file-write. 

Additionally, the worm also spread to network shares either through scheduled jobs or using Windows Management 
Instrumentation (WMI). It would enumerate all user and domain accounts to access network resources, either with 
the user’s credentials or via WMI with the explorer.exe token. 

Stuxnet also had the capability to propagate to machines hosting Siemens WinCC SCADA systems by exploiting 
hardcoded SQL credentials. This approach involved leveraging the SQL credentials that were embedded within the 
WinCC1 software to gain unauthorized access to the database. Once access was established, Stuxnet utilized 
Microsoft SQL Server’s extended stored procedures to execute its code automatically. 

 

1 Vulners, ‘Siemens WinCC Microsoft SQL (MSSQL) Server Default Credentia... - Vulnerability Database | Vulners.Com’. 
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Figure 2: Stuxnet propagation mechanisms 

ELEVATION OF PRIVILEGES 

Once bootstrapped, the worm utilized multiple zero-day vulnerabilities to acquire higher levels of access and 
privileges. Two noteworthy vulnerabilities were the Windows Task Scheduler vulnerability (CVE-2010-3338) and 
the Windows Keyboard Layout vulnerability (CVE-2010-2743). These vulnerabilities enabled Stuxnet to carry out its 
payload with system privileges, which were necessary for the succeeding stages of its attack (i.e., loading its kernel-
mode driver). 

COMMAND AND CONTROL 

Stuxnet was primarily meant to work autonomously without relying on Command and Control (C&C) servers. 
However, it did have the ability to connect with distant servers, potentially for the purpose of obtaining updates or 
extracting data. Nevertheless, the utilization of C&C was limited and mostly functioned as a contingency measure. 

INSTALLATION AND PERSISTANCE 

Stuxnet introduced several files onto the system, including a duplicate of its primary Dynamic Link Library (DLL), 
which housed most of its malicious capabilities. The DLL was the component copied over to new targets during the 
infection process and was the first component to be executed. 

However, one of the most important components in the Stuxnet architecture was its kernel rootkit, named 
MrxCls.sys driver, which was digitally certified using hacked Realtek and JMicron certificates. Stuxnet used this 
driver as its primary load point, making sure the malware ran each time the compromised machine turned on. The 
driver was registered as a boot start service and started early in the Windows boot process. 

The driver also significantly contributed to the concealment of Stuxnet's presence on compromised devices and 
systems, further augmenting its stealth and persistence. Through direct manipulation of the filesystem drivers, 
Stuxnet was able to intercept and modify IRP requests pertaining to file operations, hence preventing its files from 



DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR 

 

  © 2024 Alessandro Magnosi (@klezVirus)    

being discovered by users or antivirus software. This involved removing files with attributes from directory listings 
to conceal its components, which are dispersed via USBs and other detachable drives. Files named with the pattern 
~WTR[FOUR NUMBERS].TMP or files with the .LNK extension were made invisible, making it possible for Stuxnet to 
continue operating without users or system administrators realizing it was there. 

STEP7 DLL PROXYING 

Stuxnet employed a sophisticated technique known as DLL proxying to subtly alter the behavior of industrial control 
systems managed by Siemens STEP7 software. This method involved replacing a legitimate STEP7 DLL with a 
malicious version that Stuxnet introduced onto the system. The malware’s DLL was designed to mimic the 
functionality of the original to avoid raising suspicions while introducing additional code that manipulated the PLCs 
(Programmable Logic Controllers). Once the STEP7 software loaded the compromised DLL, Stuxnet could intercept 
and modify the commands sent to the PLCs, leading to unauthorized operations such as changing the frequency of 
motor drives or modifying the logic of the PLCs. 

 

B. WINDOWS NT ARCHITECTURE 

Microsoft Windows has two levels, or "modes": user mode and kernel mode. User mode is where files and programs 
that users deal with are stored, and kernel mode is where Windows' drivers and core functions run the system. 
Through the Windows API and a set of functions in system tools, drivers can make it easier for these modes to talk to 
each other. 

WINDOWS NT – USER-MODE 

THE WINDOWS API ECOSYSTEM 

The architectural framework of Windows NT, a lineage of operating systems devised and commercialized by 
Microsoft Corporation, adheres to a stratified design comprising two primary constituents: user mode and kernel 
mode. 

It makes a very controlled logical boundary between the normal user and the Windows kernel by dividing the 
operating system into two modes. This barrier is very important for keeping the OS safe and secure, since getting 
into the kernel gives you full control of a system. Because of this, an attacker can get past this hurdle by using a 
malicious driver, which means the whole system is compromised. 

User mode encompasses an assortment of system-defined processes and dynamically linked libraries (DLLs), which 
serve as modular units of code that can be shared across multiple applications. The intermediary between user mode 
applications and the kernel functions of the operating system is denoted as an “environment subsystem.” Windows 
NT can support multiple environment subsystems, each implementing a distinct set of application programming 
interfaces (APIs). This architectural arrangement was conceived to facilitate the compatibility of applications 
originally developed for a diverse array of operating systems. It is important to note that none of the environment 
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subsystems possess direct access to hardware components; rather, interaction with hardware functions is achieved 
by invoking kernel mode routines. 

 

Figure 3: Windows Architecture Overview 

A fundamental principle underlying this architecture is that, whenever a software program needs access to system 
functionalities, it is compelled to do so through the utilization of APIs offered by the Windows ecosystem. This 
characteristic is exploited by defensive systems, which have the capacity to instrument these DLLs to hijack the 
standard control flow of a program, thereby enabling the inspection of its activities. This approach serves to enhance 
security and maintain the integrity of the system against potential threats. 

HOOKING 

A principal method employed by malware in the manipulation and subversion of system processes is undoubtedly 
userland hooking. This technique involves the strategic interception and manipulation of function calls within the 
user mode, or userland, portion of an operating system. By instrumenting and modifying the dynamically linked 
libraries (DLLs) containing application programming interfaces (APIs), malware can effectively gain visibility and 
control over the execution flow of applications, thereby enabling the execution and concealment of potentially 
malicious behavior. 
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Hooking, in the context of software security, can be likened to a web proxy. It involves intercepting and inspecting all 
API calls (e.g., CreateFile, ReadFile, OpenProcess) made by an application. Malicious software uses this strategy to 
assess the actions and manipulate the intents of the program to perform nefarious activities without detection. 

Malware authors implement hooking by hijacking or modifying function definitions (APIs) in Windows DLLs, such as 
kernel32, kernelbase, and ntdll. This is achieved by inserting a jump (jmp) instruction at the beginning of the function 
definition. This jmp instruction alters the program’s execution flow, redirecting it to the malware’s own routines. The 
malware’s module evaluates the program for any opportunities to inject malicious code or leak sensitive information 
by analyzing the arguments passed to the hooked or monitored function. This redirection process is sometimes 
referred to as a detour or trampoline. 

There are primarily two forms of userland hooking: Import Address Table (IAT) hooking and inline hooking. For the 
purposes of this paper and in the interest of brevity, we will not delve into IAT hooking, as it is not directly pertinent 
to the research presented herein. 

The following high-level schema outlines the typical implementation process for inline hooking: 

1. Identify the target function to be hooked within the executable or a dynamically linked library (DLL). 
2. Suspend all threads in the target process to ensure a safe modification environment. 
3. Backup the original bytes of the target function’s entry point (usually, the first 5-15 bytes, depending on the 

instructions). 
4. Modify the target function’s entry point by inserting a jump (JMP) instruction that redirects the control flow 

to the custom hook handler function. 
5. Resume all threads in the target process. 

Upon the execution of the hooked function, the control flow is diverted to the custom hook handler function, 
enabling the interception and potential modification of the function’s input parameters, return value, and even the 
behavior itself. The hook handler can also choose to call the original function by executing the backed-up bytes 
before returning, ensuring the original functionality is preserved when required. 

 

Figure 4: User-mode Hooking 

DLL PROXYING 

DLL Proxying, also known as DLL Forwarding or DLL Hijacking, is a technique used by attackers to manipulate the 
behaviour of applications by intercepting and redirecting calls to DLL (Dynamic Link Library) files. This method 
exploits the Windows DLL search order to load a malicious DLL instead of the legitimate one, thereby allowing the 
attacker to execute arbitrary code within the context of the compromised application. 

When a program tries to load a DLL by name without providing the complete path, the procedure usually starts. 
Windows looks for the DLL in a preset order, going through several system folders before ending with the directory 
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holding the executable file. The directories specified in the system's PATH environment variable will be searched by 
Windows if the DLL cannot be in any of these places. 

By putting a malicious DLL in a path that the application searches before the genuine DLL, attackers can take 
advantage of this behaviour. The attacker's version of the DLL is unintentionally loaded by the application when it 
tries to load the intended one. This gives the attacker the ability to run their own code inside the context of the 
infected application, possibly leading to more malicious actions, the theft of confidential data, or illegal access. 

There exist multiple iterations of DLL Proxying methodologies: 

• DLL Replacement: Swapping out a legitimate DLL for a malicious one while maybe utilizing DLL Proxying 
to keep the original DLL working. 

• DLL Search Order Hijacking: Taking advantage of an application's loading pattern by inserting a malicious 
DLL into a directory that comes before the genuine DLL in the search sequence. 

• Phantom DLL Hijacking: Inserting a malicious DLL that is intended to be loaded by the program, leading it 
to assume incorrectly that it is a necessary but nonexistent DLL. 

• DLL Redirection: Redirecting the application to load a malicious DLL by changing search parameters like 
%PATH% or editing .exe.manifest/.exe.local files. 

• WinSxS DLL Replacement: Often observed in DLL side-loading situations, this involves swapping out a 
valid DLL for a malicious one inside the WinSxS directory. 

• Relative Path DLL Hijacking: Like Binary Proxy Execution techniques, Relative Path DLL Hijacking involves 
hiding the malicious DLL in a user-controlled directory alongside a copy of the application. 
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WINDOWS NT – KERNEL-MODE 

The Windows kernel serves as the fundamental interface between the hardware of the system with its high-level 
software. The system is tasked with overseeing the allocation and utilization of system resources, ensuring security 
measures are in place, managing processes and memory, and performing various other functions. The kernel works 
in a privileged mode called kernel mode, where it handles all key functions necessary for the efficient and safe 
operation of the system, unlike user-mode apps that execute particular tasks. 

The Windows Kernel operates predominantly in kernel mode, partitioned into distinct layers that each perform 
essential functions within the system: 

• NT Operating System (NTOS): This core component encompasses kernel-mode services crucial for the 
operation of the OS. It includes: 

• Runtime Library: Offers basic routines and utilities for other components of the kernel. 

• Scheduling: Handles thread scheduling across CPUs, prioritizing, and managing execution time. 

• Executive Services: High-level interfaces and functions for OS operations. 

• Object Manager: Manages Windows objects and their permissions, providing a secure mechanism 
for object access and manipulation. 

• Services for I/O, Memory, and Processes: Includes comprehensive management capabilities for 
input/output operations, memory handling, and process life cycle. 

• Hardware Abstraction Layer (HAL): HAL simplifies the interaction between the NTOS and the system 
hardware. It mitigates hardware dependency by providing: 

• Device Access Facilities: Streamline access to hardware components. 

• Timers and Interrupt Servicing: Manage timing operations and interrupt handling. 

• Clocks and Spinlocks: Essential for managing time-sensitive operations and low-level 
synchronization. 

• Drivers: These are essentially kernel extensions primarily focused on device access. They interact with the 
HAL and hardware directly to extend the kernel's capabilities through additional modular components. 

The Windows kernel offers several services crucial for efficient system management: 

• Process Management: Handles creation and management of processes and threads, which are fundamental 
for application operation. 

• Security Reference Monitor: Ensures security across the system by managing access checks and token 
operations, which are vital for maintaining the integrity and confidentiality of the data and operations. 

• Memory Manager: Manages all aspects of memory handling, such as dealing with page faults, managing 
virtual and physical memory spaces, and supporting operations like copy-on-write and mapped files. 

• Lightweight Procedure Call (LPC): Acts as the communication backbone for remote procedure calls and 
user-mode system services, enabling efficient messaging within the system. 

• I/O Manager: Translates user-level requests into system I/O operations, manages device configuration and 
operation, and is integral to the plug-and-play functionality as well as power management. 

• Cache Manager: Built on top of the Memory Manager, it provides optimized file-based caching to enhance 
performance for file system I/O operations. 
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Finally, the Scheduler, also referred to as the kernel, is responsible for managing thread execution across processors: 

• Thread Scheduling: Utilizes a round-robin method among different priority levels with adjustments for 
maintaining efficiency, except in the case of fixed priority real-time threads. 

• Asynchronous Procedure Calls (APCs): Serve to deliver I/O completions and manage thread/process 
terminations. Unlike UNIX signals, APCs require explicit blocking by user-mode code to handle pending 
deliveries. 

• Interrupt Service Routines (ISRs): Operate at a high Interrupt Request Level (IRL > 2), processing most 
tasks by queuing a Deferred Procedure Call (DPC) at DISPATCH level (IRQL == 2). 

• Worker Thread Pool: Available for running tasks that cannot be handled within the normal thread context, 
providing flexibility and robust handling of various operations across the system. 

KERNEL-MODE DRIVERS 

Windows drivers are specialized software components that enable the operating system to interface with various 
hardware devices. They translate system-level operations into device-specific commands and vice versa, allowing 
applications to interact with hardware without needing to manage the hardware's details directly. 

In the Windows Driver Stack, kernel-mode drivers are organized into three primary types, each serving distinct roles 
and positioned at different levels in the driver hierarchy: 

• Highest-Level Drivers: These drivers manage file systems such as NT File System (NTFS), File Allocation 
Table (FAT), and CD-ROM File System (CDFS). They rely heavily on the functionality provided by lower-level 
drivers to perform their operations. The highest level drivers include: 

• File System Drivers (FSDs): Manage how data is stored and retrieved from various storage media. 

• Intermediate Drivers: Positioned between the highest-level and lowest-level drivers, intermediate drivers 
can either manage a device directly or modify the behavior of lower-level drivers. They are subdivided into: 

• Function Drivers: Control specific devices on an I/O bus. 

• Filter Drivers: Modify the input/output operations of function drivers. They can be stacked above 
or below these drivers. 

• Software Bus Drivers: Facilitate the operation of a logical bus that manages child devices, such as a 
driver controlling a multifunction adapter with multiple heterogeneous devices on-board. 

• Lowest-Level Drivers: These are the foundational drivers in the stack and include hardware bus drivers 
that manage the I/O bus connections to peripheral devices. They operate independently of other lower-level 
drivers and coordinate closely with the Plug and Play manager to manage device configurations and system 
resources. This category also includes: 

• Legacy Drivers: Typically control a physical device directly and are considered part of the lowest-
level drivers. 
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Figure 5: High-Level, Medium-Level, and Low-Level Drivers 

Drivers in Windows are integrated at the kernel level, allowing them to execute operations with high privileges 
necessary for direct hardware interaction. They communicate with the hardware through the Hardware Abstraction 
Layer (HAL), which provides a consistent interface, irrespective of the underlying hardware specifics. 

Driver Development 

Developing Windows drivers requires an in-depth understanding of the Windows Driver Model (WDM), Kernel-
Mode Driver Framework (KMDF), and User-Mode Driver Framework (UMDF). These frameworks and models 
provide standardized methods to ensure that drivers operate safely and efficiently within the system. 

WDM is the older driver development model that handles the interaction between the operating system and the 
hardware. It categorizes drivers into three types based on their operation: 

• Bus Drivers: Manage a logical or physical bus. 

• Function Drivers: Manage a specific function for a device. 

• Filter Drivers: Provide added functionality and mediate between the OS and device drivers. 

WDF is a collection of tools and libraries designed to simplify the development of device drivers. It includes a kernel 
mode framework (KMDF) and a user-mode one (UMDF), which provide environments for writing drivers in user-
mode or kernel-mode, respectively. 
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• Kernel-Mode Driver Framework (KMDF): Helps to implement drivers that operate in kernel mode, 
offering robust support for hardware that requires high-speed interaction with the OS, such as graphics 
cards and network adapters. KMDF drivers benefit from simplified handling of device operations, reduced 
coding requirements, and better system stability. 

• User-Mode Driver Framework (UMDF): Supports drivers that run in user-mode space, reducing system 
risk and improving stability, as faults in the driver do not impact the kernel. This is suitable for less critical 
hardware interaction, like USB peripherals and other external devices that do not require direct memory 
access (DMA) or other high-privileged operations. 

COMMON KERNEL DRIVER VULNERABILITIES 

Drivers are crucial software components that enable the interaction between an operating system and its hardware, 
making them indispensable for the operation of any computer system. These drivers, particularly those operating on 
x86-64 architecture within the Windows environment, may occasionally have security weaknesses that can be 
exploited by malevolent individuals. These flaws have the potential to turn crucial software components into entry 
points for major security breaches. 

UNPROTECTED READ/WRITE TO MODEL SPECIFIC REGISTERS 

An important risk arises from the utilization of Model Specific Registers (MSRs). MSRs, or Model Specific Registers, 
are specialized registers included in most computer processors. They serve specific purposes such as debugging, 
monitoring performance, and managing aspects of the CPU and GPU. They have a vital function in the running of a 
system, as they gather key environmental measurements such as temperature or voltage. Drivers exposing IOCTLs to 
query the system registers usually do that to gather information about the OS. 

However, certain specific registers, such as IA32_LSTAR, regulate how system calls are dispatched within the system 
and can be abused for arbitrary code execution.  

Normally, IA32_LSTAR points to KiSystemCall64, which is contained in ntoskrnl.exe. However, with the 
implementation of KVA shadowing patches, IA32_LSTAR is redirected to KiSystemCall64Shadow. 
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This function is invoked whenever a user-mode thread executes a system call and switches the thread execution to 
kernel-mode using swapgs instruction. 

This capability can be abused by substituting the address in a system call target register2 (such as the IA32_LSTAR) 
with an address that directs to malicious code. Indeed, by overwriting the pointer saved in the IA32_LSTAR, it is 
possible to redirect execution of any program upon a system call invocation. In order to avoid crashes, the function 
executed should firstly disable SMEP (Supervisor Mode Execution Prevention Of User Supervisor Pages) and SMAP 
(Supervisor Mode Access Prevention Of User Supervisor Pages) which are enabled as bits in CR4 (Control Register 
Four), redirect control of the program invoking a syscall instruction, swap to kernel GS, restore the IA32_STAR, 
execute the arbitrary code, restore user-mode GS, and finally, use ROP to restore SMEP/SMAP and restore normal 
execution.  

 
Figure 6: Simplified MSREXEC Workflow 

 

2 Doe, ‘MSREXEC - Elevate Arbitrary WRMSR to Kernel Execution’. 
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Although the technique will not work on HVCI systems due to the impossibility to change the LSTAR pointers if 
protected by the Hyper-V, the issue is still exploitable on any non-HVCI enforced machines. 

 
Figure 7: Sample WRMSR Exploitation via MSREXEC 

ARBITRARY PHYSICAL MEMORY READ 

Another risk arises from the utilization of non-sanitized user-specified addresses to implement physical memory 
mapping functionalities, where parameters from the SystemBuffer are directly used in operations that involved: 

• Executing the MmMapIoSpace function, which takes a physical address, length, and a hardcoded cache type 
of 0, to map specified physical memory into the system memory. 

• Executing IoAllocateMdl, which uses the virtual address returned by MmMapIoSpace and the same length 
value to create a Memory Descriptor List (MDL) associated with an I/O Request Packet (IRP). 

• Calling MmBuildMdlForNonPagedPool, which initializes the memory for the buffer using the newly 
created MDL. 

• Finally, executing MmMapLockedPagesSpecifyCache, which maps the allocated physical memory to a 
user-mode buffer. 

This pattern allows any user on the system to control both the Physical Address and the size passed to the 
MmMapIoSpace, subsequently obtaining the associated mapped user-mode address. Such control could be 
exploited using a physical memory "scanning" approach to locate and manipulate an elevated process token, a 
method previously detailed by security researchers Ruben Boonen of IBM X-Force and h0mbre. 
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Figure 8: Arbitrary Physical Memory Mapping Exploit Strategy 

ARBITRARY VIRTUAL MEMORY READ/WRITE 

A Kernel Arbitrary Read/Write vulnerability is probably the most exploited security flaw within the kernel space 
These vulnerabilities can arise in several forms, such as using memmove and memcpy functions with user-controlled 
parameters without proper validation, directly assigning user-provided pointers to kernel pointers, or through 
system calls like ZwWriteVirtualMemory that allow writing to virtual memory if improperly secured, just to name a few.  

This issue can be exploited to carry out a variety of attacks, ranging from disabling security features and mapping 
entire drivers in memory to executing data-only attacks. Specialized tools for these exact reasons have been created 
and released. The most complete is probably KDU3. This tool is designed to simplify exploring Windows kernel and 
components without needing extensive setup or a local debugger. It includes features such as Protected Processes 
Hijacking via process object modification, Driver Signature Enforcement (DSE) Overrider like DSEFIx, a driver loader 
to bypass DSE akin to TDL/Stryker, and support for various vulnerable drivers as functionality providers.  

 

3 hfiref0x, ‘Hfiref0x/KDU’. 
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This is the class of vulnerabilities that we were most interested in when developing this paper, as they would allow 
an attacker to create a new provider to wrap Kernel R/W primitives and easily use them with private or publicly 
released tooling to perform kernel mode attacks. 

KERNEL PROTECTIONS  

To reduce the potential issues caused by third party drivers, Microsoft designed many different protections. These 
methods include the already mentioned SMEP/SMAP and other kernel-based mitigations, such as Patch Guard, 
kASLR or kCFG.  

Specific to driver loading, Microsoft implemented and enforced several additional protections starting with Vista, 
such as Driver Signing Enforcement (DSE)4, the Driver Certificate Revocation List (CRL)5, and so on. 

However, the most successful mitigations are the ones included in the Virtualization-Based Security (VBS), which 
include both hardware and software components.  As further detailed in the document VBS, and especially HVCI, 
makes it incredibly difficult to inject unsigned code in the kernel or load a non WHQL-signed driver on a system, 
disable security features, or even load known vulnerable driver thanks to the Driver Block List. 

DRIVER SIGNING ENFORCEMENT 

Digital Signature Enforcement (DSE) is the word that is used in kernel terminology to refer to the process of 
enforcing digital signatures. DSE in Windows is implemented as a key part of the operating system's Code Integrity 
mechanisms, which are primarily facilitated through a component known as CI.dll (Code Integrity Module). This DLL 
is crucial for verifying the integrity of driver signatures and system files each time they are loaded into memory. 

The CI.dll is integral to the DSE process and is responsible for several key functions: 

1. CiInitialize: This is the main initialization function within CI.dll, called during the system's boot process. It 
sets up the necessary parameters and configurations for subsequent integrity checks. This function also 
ensures that CI.dll itself has not been tampered with, performing a self-integrity check. 

2. Function Pointers Setup: Upon initialization, CI.dll sets up a series of callbacks and function pointers in the 
NT kernel. These pointers are crucial for the kernel to invoke the appropriate checks at runtime whenever a 
new driver or system file needs to be loaded. The function pointers are saved as a global array g_CiCallbacks, 
and include: 

• CiValidateImageHeader: Checks the integrity of the image headers of files before they are loaded. 

• CiValidateImageData: Ensures that the data within the files matches what is expected from their 
digital signatures. 

• CiQueryInformation: Allows querying of the signature and integrity status of loaded modules. 

3. Driver Signature Verification: The kernel verifies the integrity of a Driver functions from CI.dll when: 

• Loading system images (MmLoadSystemImage). 

• Creating sections for driver execution (MiCreateSectionForDriver). 

 

4 tedhudek, ‘Driver Signing Policy - Windows Drivers’. 

5 ‘KB5029033: Notice of Additions to the Windows Driver.STL Revocation List - Microsoft Support’. 
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• Validating the headers and data of executable images as they are loaded into memory. 

4. Handling Boot Options: CI.dll also interprets system boot options related to integrity checks. For example, 
if the system is booted with options like "DISABLE_INTEGRITY_CHECKS" or "TESTSIGNING", CI.dll adjusts its 
behaviour accordingly to allow for development and debugging scenarios. 

5. Dynamic Enforcement: Throughout the system's operation, CI.dll continues to enforce signature 
verification dynamically. Every time a new driver is loaded, or a system file is accessed, CI.dll ensures it 
adheres to the integrity policies set forth by the operating system. If a file fails the check at any point, its 
execution is blocked, and the event is logged for security auditing. 

DRIVER BLOCKLIST AND WINDOWS DEFENDER APPLICATION CONTROL (WDAC) 

The Driver Block List is a security feature implemented within Windows operating systems to enhance system 
integrity and security by preventing known problematic or vulnerable drivers from being loaded. This mechanism is 
particularly important in environments where security and stability are paramount, such as in enterprise settings or 
on systems that handle sensitive data. 

The primary purpose of the Driver Block List is to mitigate the risk associated with drivers that are known to contain 
vulnerabilities, have stability issues, or have been exploited by malware. By maintaining a list of such drivers and 
blocking their operation, Windows helps protect the system from potential threats and system crashes that could be 
triggered by these drivers. 

The inner work of the driver block list can be divided in 4 different phases: 

• Identification: Microsoft and other vendors identify drivers that could pose a risk to system stability or 
security. This can be due to known vulnerabilities, incompatibility issues, or the driver being maliciously 
designed or compromised. 

• Listing: Once a driver is identified as problematic, its details (such as the driver's name, version, and digital 
signature) are added to the block list. This list is maintained and updated regularly by Microsoft, often 
through Windows Update. 

• Enforcement: When a system operation requires the loading of a driver, Windows checks if the driver is on 
the block list. If the driver is listed, Windows prevents its loading, thus blocking its execution. 

• Notification: If a blocked driver is attempted to be loaded, the system may log an event or notify the 
administrator, depending on the system's configuration and the severity of the block. 
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LIMITATIONS AND BYPASS STRATEGIES 

The main issue with the Driver Block List in Windows is that it functions as a blacklist, which can inherently be 
bypassed. As with all blacklists, they are only as good as their latest update, relying on the known signatures of 
malicious drivers to block them.  

Another significant problem with this blocklist is the inconsistency in its updates, which, as highlighted by security 
researcher Will Dormann, may only occur annually. This infrequent updating process undermines the efficacy of the 
blocklist, leaving systems vulnerable to newly discovered threats for extended periods. 
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Figure 9: W. Dormann confirming the inconsistent update and usage of the Driver Blocklist 

Other bypass strategies that can be used by attackers are: 

1. Driver Signature Forgery: APTs might employ sophisticated techniques to forge signatures of drivers. By 
creating a driver with a forged or stolen valid digital signature, the driver might not be recognized as 
malicious or problematic and thus not added to the block list. This allows the malicious driver to be loaded 
by the system. 

2. Exploiting Unlisted Drivers: If a driver has not yet been identified as malicious or problematic, it won’t be 
on the block list. APTs can exploit the time gap between a driver being recognized as malicious and its 
addition to the block list to deploy their malware. 

3. Compromising the Update Mechanism: By targeting the mechanism that updates the block list, such as 
interfering with Windows Update or corrupting the update process, APTs can prevent new entries from 
being added to the list. This could keep their malicious drivers operational longer than they otherwise 
would be. 

Regarding point 2, it must be said that the driver blocklist doesn’t include many drivers that have been discovered to 
be vulnerable. Analyzing the different versions of the blocklist, it is possible to see that either the default or 
recommended blocklists are lacking several drivers listed in the LOLDrivers6 project. This limitation was already 

 

6 ‘LOLDrivers’. 
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noticed by Will Dormann and Yarden Shafir, among others. To confirm it, it is possible to use our simple script7. The 
output of that script can be seen below: 

 
Figure 10: dblchk.py output 

In addition to the above, it must be noted that an attacker with Admin access, could easily disable the Blocklist by 
either disabling HVCI or tampering with the Windows Registry: 

Windows Registry Editor Version 5.00 
 
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CI\Config] 
"VulnerableDriverBlocklistEnable"=dword:00000000 
 
To address these limitations, Microsoft also released Windows Defender Application Control (WDAC), which 
provides a more proactive approach to securing Windows environments against malicious software. WDAC allows 
administrators to create policies that define which applications are trusted and can run on a system, moving beyond 
the traditional blacklist approach of the Driver Block List. By leveraging code integrity policies that can be applied 
enterprise-wide, WDAC enables a white-listing model, effectively blocking unapproved software by default and 
significantly enhancing security. This method not only prevents known malicious drivers but also offers protection 
against zero-day attacks by allowing only trusted software to execute, regardless of its presence on any block list. 
 
Although WDAC offers more customization than the standard Driver Blocklist, it shares mostly the same 
shortcomings (unless it is used in a “whitelisting fashion”). 
 

CERTIFICATE REVOCATION LIST 

The Windows Driver.STL file is part of Windows Code Integrity. It contains digital signatures and lists of drivers that 
Microsoft has revoked, preventing the execution of malware in Windows boot and kernel processes. Driver.STL is 
included with Windows but is not an integral part of it. It cannot be disabled, tampered with, or removed from the 
system. Microsoft updates the revocation file's contents, and these updates are distributed to Windows systems and 
users via Windows Update. 

This list can usually be found under C:\Windows\System32\CodeIntegrity\Drivers.stl. 

Windows Code Integrity verifies the origin and authenticity of drivers running on Windows. It uses digital signatures 
to ensure the integrity of Windows files and drivers, preventing the loading of unsigned or tampered files. Windows 
Code Integrity and the Driver.STL revocation list have been part of Windows since Windows Vista. 

The certificate revocation list is loaded by the CI.dll, and more specifically during the initialization routine 
CI!CiInitialize. The function responsible for loading the CRL is Ci!CipLoadAndValidateRevocationList, that takes the 
list from the file on Disk and load its policies. 

 

7 262588213843476, ‘Script to Check How Many and Which Vulnerable Drivers (Listed in the LOLDrivers Project) 
Are Not Covered by Microsoft Recommended Blocklist’. 

(msdelta) C:\Dev\msdelta\blocklistcheck>python dblchk.py   
[*] Getting LoL Blocklist... 
[*] Getting Windows Blocklist... 
[+] Microsoft does not block 434 vulnerable drivers 
[+] Microsoft does block 80 vulnerable drivers 
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Figure 11: CRL Loading function 

The verification process is triggered upon, for example, a driver loading. This happens, primarily, when a Driver 
service is started or restarted.  In these cases, the function is triggered upon a nt!IopLoadUnloadDriver call directly, or 
it’s invoked indirectly by Universal Background Process Manager, which handles the Service Manager (SCM). 

 
Figure 12: CRL Validation Callstack 
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The function responsible for validating the Hash of the driver is CI!MinCryptFileRevoke. This function checks whether 
a specific file, identified by a search key, is revoked. It does this by searching for the key in a pre-defined revocation 
list and returning a specific status based on the search result. Namely, if the hash is not found in the CRL, the value 
0xC0000603 = STATUS_IMAGE_CERT_REVOKED is returned.  

 
Figure 13: Function that checks if a specified hash is in the CRL 

VIRTUALIZATION BASED PROTECTION (VBS) AND HYPERVISOR CODE INTEGRITY (HVCI) 

Hypervisor-Protected Code Integrity (HVCI)8 employs sophisticated virtualization-based security technologies to 
strengthen the protection mechanisms in Windows systems, with a specific focus on defending the kernel against the 
execution of malicious code. This is accomplished by implementing stringent memory access regulations that 
prohibit writable executable memory pages, effectively preventing attackers from executing unauthorized code, such 
as shellcode, within the kernel space. 

HVCI, short for Hypervisor-protected Code Integrity, is a component that functions inside the wider framework of 
Virtualization-Based Security (VBS). VBS enhances security by executing the operating system and specific security 

 

8 ‘Virtualization Based Security (VBS) and Hypervisor Enforced Code Integrity (HVCI) for Olympia Users!’ 
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functions in virtual machines. This is achieved by leveraging hardware and hypervisor capabilities to separate these 
environments from the regular operating system. 

Hyper-V, which is Microsoft's hypervisor technology, is essential for implementing VBS. It enables the execution of 
several virtual machines on a single physical hardware, while maintaining strict isolation between these VMs. The 
isolation is required for ensuring security, especially in terms of preventing any failures or attacks in one virtual 
machine from impacting other virtual machines or the host system. 

SLAT, or Extended Page Tables (EPT) as referred to by Intel, plays an important role inside this architecture. Hyper-
V utilizes a mechanism that enables it to control the way virtual machines interact with physical memory. This 
mechanism involves converting the memory addresses utilized by a virtual machine into the corresponding physical 
addresses on the host computer. The presence of this address translation layer is essential for ensuring both 
performance isolation and security. 

VBS utilizes Virtual Trust Levels (VTLs) to distinguish between operations with higher security and those with lower 
security. Usually, two VTLs are employed: 

• VTL 0 refers to the standard operating environment for Windows, where regular applications and most of 
the Windows kernel processes take place. It has lower privileges and is more susceptible to user 
interactions and third-party apps. 

• VTL 1: This elevated degree of trust operates a simplified and protected core, managing critical tasks and 
defending against security breaches in VTL 0. It functions with elevated privileges and more stringent access 
controls. 

The main distinction between VTL 0 and VTL 1 is their varying levels of security and the specific kind of operations 
they are capable of handling. VTL 1 is specifically designed to enhance security by being separate from VTL 0. It runs 
security-sensitive elements such as Credential Guard and Device Guard, which incorporate HVCI. 

The interplay between these two layers is meticulously regulated. VTL 1 can exert control and oversee specific 
elements of VTL 0, especially through mechanisms like HVCI. For instance, VTL 1 has the capability to implement 
code integrity policies in VTL 0, thereby guaranteeing that only code that has been signed and verified is executed in 
the kernel. 
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Figure 14: Memory Access with EPT9 

HVCI utilizes the virtualization features offered by VTL 1 to impose limitations on the execution of kernel code in 
VTL 0. HVCI utilizes SLAT/EPT technology to enforce a strict separation between executable and writable kernel 
memory. This is achieved by designating the EPT entries for kernel memory as either executable but not writable, or 
writable but not executable. 

This configuration effectively mitigates several forms of attacks, including those aimed at injecting malicious code 
into memory regions and subsequently executing it. The EPT settings enforced by HVCI will block any effort to make 
executable pages readable, as the hypervisor does not permit such changes. 

EPT, or Extended Page Tables, are crucial in this security architecture as they allow the hypervisor to establish 
precise access constraints on the physical memory that the VMs can access. The controls are implemented on 
memory pages according to the security policies specified by HVCI, thereby establishing an extra layer of memory 
protection that functions at a lower level than the operating system. 

  

 

9 ‘Windows Internals, Part 2, 7th Edition [Book]’. 
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C. WINDOWS NTFS 

The NTFS10 (New Technology File System) is a file system developed by Microsoft and introduced with Windows NT. 
It includes several improvements over previous file systems, such as support for metadata, and the use of advanced 
data structures to improve performance, reliability, and disk space utilization. NTFS supports a variety of attributes 
that define file properties and data. 

NTFS OVERVIEW 

When a volume is formatted using the NTFS file system, it generates many system files, such as $MFT (Master File 
Table), $Bitmap, $LogFile, and others, to store metadata. These files store comprehensive data regarding all files and 
directories present on the NTFS drive. 

The primary data about an NTFS drive is stored in the Partition Boot Sector, often known as the $Boot metadata file. 
This information begins at sector 0 and can potentially occupy up to 16 sectors. This document provides an overview 
of fundamental NTFS volume details including the precise location of the primary metadata file, $MFT. 

 

NTFS ATTRIBUTES 

The NTFS file system considers each file (or folder) as a compilation of file attributes, such as the file's name, security 
information, and contents. Each attribute is distinguished by an attribute type code and, optionally, an attribute 
name. 

Resident attributes are those file properties that can be accommodated within the MFT file record. For example, the 
filename and timestamp are consistently present attributes within the MFT file record. 

When the information of a file is too large to fit in the MFT file record, certain attributes of the file become 
nonresident. These attributes then occupy one or more clusters of disk space in a different location on the volume. 

When the attributes exceed the capacity of a single MFT record, NTFS generates additional MFT records. The MFT 
record of the first file contains an Attribute List attribute that provides information about the whereabouts of all the 
attribute records. 

ATTRIBUTE 
TYPE 

DESCRIPTION 

STANDARD 
INFORMATION 

Includes information such as timestamp and link count. 

ATTRIBUTE LIST Lists the location of all attribute records that do not fit in the MFT record. 

FILE NAME A repeatable attribute for both long and short file names. The long name can be up to 255 
Unicode characters, while the short name follows the 8.3 case-insensitive format. Additional file 
names or hard links required by POSIX can be included as additional file name attributes. 

SECURITY Describes the file's owner and access permissions. 

 

10 ‘NTFS.Com - Data Recovery Software, File Systems, Hard Disk Internals, Disk Utilities’. 
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DESCRIPTOR 

DATA Contains file data. NTFS allows multiple data attributes per file, typically including one 
unnamed data attribute and potentially one or more named data attributes, each using a 
particular syntax. 

OBJECT ID A volume-unique file identifier used by the distributed link tracking service. Not all files have 
object identifiers. 

LOGGED UTILITY 
STREAM 

Like a data stream, but operations are logged to the NTFS log file like NTFS metadata changes. 
This is used by EFS (Encrypting File System). 

REPARSE POINT Used for volume mount points and by Installable File System (IFS) filter drivers to mark certain 
files as special to the driver. 

INDEX ROOT Used to implement folders and other indexes. 

INDEX 
ALLOCATION 

Used to implement folders and other indexes. 

BITMAP Used to implement folders and other indexes. 

VOLUME 
INFORMATION 

Used only in the $Volume system file. Contains the volume version. 

VOLUME NAME Used only in the $Volume system file. Contains the volume label. 
Table 1: NTFS File Types 

NTFS attributes are metadata components that define the properties and data of files and directories. Some of the 
standard attributes include: 

• $STANDARD_INFORMATION: Stores basic metadata such as creation, modification, and last access 
timestamps, as well as file flags like read-only, hidden, etc. 

• $ATTRIBUTE_LIST: Contains a list of attributes that cannot be contained within a single MFT (Master File 
Table) record. 

• $FILE_NAME: Stores the name of the file and a reference to its parent directory. 

• $DATA: Contains the actual data or content of the file. 

• $INDEX_ROOT and $INDEX_ALLOCATION: Used by directories to manage and index files. 

NTFS SYSTEM FILES 

NTFS has several system files, all of which are concealed from sight on the NTFS drive. A system file is a file that is 
utilized by the file system to hold its information and to execute the functions of the file system. The Format utility is 
responsible for placing system files on the volume. 

SYSTEM FILE FILE 
NAME 

MFT 
RECORD 

PURPOSE OF THE FILE 

MASTER FILE 
TABLE 

$Mft 0 Contains one base file record for each file and folder on an NTFS volume. If 
the allocation information for a file or folder is too large to fit within a 
single record, other file records are allocated as well. 

MASTER FILE 
TABLE 2 

$MftMirr 1 A duplicate image of the first four records of the MFT. This file guarantees 
access to the MFT in case of a single-sector failure. 

LOG FILE $LogFile 2 Contains a list of transaction steps used for NTFS recoverability. Log file 
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size depends on the volume size and can be as large as 4 MB. It is used by 
Windows NT/2000 to restore consistency to NTFS after a system failure. 

VOLUME $Volume 3 Contains information about the volume, such as the volume label and the 
volume version. 

ATTRIBUTE 
DEFINITIONS 

$AttrDef 4 A table of attribute names, numbers, and descriptions. 

ROOT FILE 
NAME INDEX 

$ 5 The root folder. 

CLUSTER 
BITMAP 

$Bitmap 6 A representation of the volume showing which clusters are in use. 

BOOT SECTOR $Boot 7 Includes the BPB used to mount the volume and additional bootstrap 
loader code used if the volume is bootable. 

BAD CLUSTER 
FILE 

$BadClus 8 Contains bad clusters for the volume. 

SECURITY 
FILE 

$Secure 9 Contains unique security descriptors for all files within a volume. 

UPCASE 
TABLE 

$Upcase 10 Converts lowercase characters to matching Unicode uppercase characters. 

NTFS 
EXTENSION 
FILE 

$Extend 11 Used for various optional extensions such as quotas, reparse point data, 
and object identifiers. 

  
12-15 Reserved for future use. 

QUOTA 
MANAGEMENT 
FILE 

$Quota 24 Contains user assigned quota limits on the volume space. 

OBJECT ID 
FILE 

$ObjId 25 Contains file object IDs. 

REPARSE 
POINT FILE 

$Reparse 26 This file contains information about files and folders on the volume 
include reparse point data. 

Table 2: NTFS Systems Files 

NTFS STREAMS 

All files on an NTFS volume consist of at least one stream - the main stream, which is the standard, visible file where 
data is stored. The full name of a stream follows this format: 

<filename>:<stream name>:<stream type> 

Following MS documentation, the default data stream does not have a name. Thus, the fully qualified name for the 
default stream of a file named "sample.txt" is "sample.txt::$DATA", where "sample.txt" is the file name and "$DATA" 
is the stream type. 

For directories, there is no default data stream, but there is a default directory stream. The stream type for 
directories is $INDEX_ALLOCATION. The default stream name for the $INDEX_ALLOCATION type (a directory 
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stream) is $I30. This contrasts with the default stream name for a $DATA stream, which has an empty stream name. 
The following are equivalent: 

Dir C:\Users 
Dir C:\Users:$I30:$INDEX_ALLOCATION 
Dir C:\Users::$INDEX_ALLOCATION 

The stream types currently used are $DATA, $INDEX_ALLOCATION, and $BITMAP. The $DATA stream type is used 
for storing the actual file data. The $INDEX_ALLOCATION stream type is used for directories, managing the indexing 
of file names within the directory. The $BITMAP stream type is used to track the allocation status of clusters in the 
file system, helping to manage free and used space. 

TFS conventionally uses names starting with '$' for internal metadata files and streams on those internal metadata 
files. There is no mechanism to prevent applications from using names of this form; therefore, it is recommended 
that names of this form not be used internally by an object store for a server environment, except when emulating 
NTFS metadata streams such as "\$Extend\$Quota:$Q:$INDEX_ALLOCATION" or 
"\$Extend\$Reparse:$R:$INDEX_ALLOCATION". 

Stream names currently used by NTFS include: 

STREAM NAME EXAMPLE 

$I30 <DIR>:$I30:$INDEX_ALLOCATION (Default dir stream’s name) 

$O \$Extend\$ObjId:$O:$INDEX_ALLOCATION 

$Q \$Extend\$Quota:$Q:$INDEX_ALLOCATION 

$R \$Extend\$Reparse:$R:$INDEX_ALLOCATION 

$J \$Extend\$UsnJrnl:$J:$DATA 

$MAX \$Extend\$UsnJrnl:$MAX:$DATA 

$SDH \$Secure:$SDH:$INDEX_ALLOCATION 

$SII \$Secure:$SII:$INDEX_ALLOCATION 

NTFS PERMISSIONS 

Permissions in NTFS are managed through Access Control Lists (ACLs), which consist of one or more Access Control 
Entries (ACEs) that define user access permissions. NTFS uses flags within files and directories to control their 
behaviour and access. Common flags include archive, compressed, encrypted, and hidden. 

An ACL is a collection of ACEs, each specifying user permissions for a particular file or directory. Each ACE consists 
of: 

• Type: Defines the type of ACE (e.g., allow or deny). 

• Flags: Control how permissions are inherited and propagated. 
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• Access Mask: Specifies the permissions granted or denied by the ACE. 

• SID (Security Identifier): Identifies the user or group to which the ACE applies. 

NTFS REPARSE POINTS 

Reparse points are NTFS objects that associate a reparse tag with a file or directory. They are used to extend 
functionality in the file system without requiring modifications to the NTFS driver itself. Reparse points can redirect 
file or directory accesses to other locations, both on local and network storage. 

It is worth noting that NTFS defines a "reparse point" as a form of "preprocessing" that occurs before accessing a 
certain file or directory. Reparse points can redirect access to files that have been relocated to long-term storage, 
allowing applications to retrieve and immediately access them. 

Each reparse point contains a reparse tag and data. The reparse tag identifies the type of reparse point and its 
behaviour. Common reparse tags include: 

• Symbolic Links: Point to another file or directory in the file system. 

• Mount Points: Link to other volumes without requiring a drive letter. 

• Junction Points: Like symbolic links but restricted to local directories. 

Junction points are a type of reparse point that redirect directory access to another directory which may be located 
on the same drive or on a different drive. To circumvent the limit of 26 drive letters that Windows imposes, volume 
junctions are used to redirect directories to a whole disk, whereas directory junctions are used to redirect 
directories to another directory file. Both instances involve the use of absolute paths to define the redirection target. 

It is possible to use symbolic links since the release of Windows Vista. There is a possibility that the symbolic links 
will redirect to a file or directory with an absolute or relative path. When they are defined on a remote file system, 
they are managed on the local system. Directory junctions, on the other hand, are processed on the file server, which 
is important in situations where the destination is unavailable.  

The use of junction points, which have been accessible since Windows 2000, did not become widespread until 
Windows Vista. This was because Windows Vista utilized them to divert access to legacy directories (such as 
Documents and Settings) to prevent older software from modifying the files that were accessed. This version of 
Windows Vista includes symbolic links in directories that had not been used before. 

A Windows shortcut (.lnk file) is not the same as an NTFS symbolic link. Shortcuts are regular files with metadata and 
can be created on any filesystem, while symbolic links are integrated into the filesystem itself and are transparent to 
applications. 
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III .  PREVIOUS RESEARCH 

A. ADAPTIVE DLL HIJACKING: KOPPELING 

EXECUTION SINKS 

DLL hijacking is classified according to the source of execution: static sinks and dynamic sinks. Static sinks refer to 
the loading of DLLs during the initialization phase of a process. They significantly depend on the Import Address 
Table (IAT) and require all the required functions mentioned in the parent module's IAT to be available before 
control is transferred. On the other hand, dynamic sinks, which entail the loading of DLLs as needed via functions 
such as LoadLibrary, are less strict. They frequently do not necessitate specific methods and may not verify the DLL's 
export table until GetProcAddress is explicitly performed. 

PROXYING AND EXPORT FORWARDING  

Function proxying is essential in adaptive DLL hijacking to maintain operational stability in the host process. This 
process entails connecting the export table of a malicious DLL to that of a genuine DLL via export forwarding 
techniques. To escape detection, the malicious program redirects any calls to the genuine DLL's original routines, 
allowing it to integrate into the host application while preserving important features. 

#pragma comment(linker,"/export:Export1=Original.Export1") 
#pragma comment(linker,"/export:Export2=Original.Export2") 
#pragma comment(linker,"/export:Export3=Original.Export3") 

CHALLENGES IN DLL HIJACKING 

One of the key difficulties in DLL hijacking is to maintain the stability of the host process and prevent it from 
displaying strange behavior that could raise suspicion among users or system administrators. Methods such as stack 
patching are used to alter the return address of a LoadLibrary function call, guaranteeing that the search for 
subsequent functions does not encounter the harmful DLL. In addition, runtime linking refers to the process of 
dynamically redirecting function pointers to the correct DLL once the malicious DLL acquires execution through 
DllMain. 

Nick Landers developed a small POC about this technique11. 

STABILITY AND LOADER LOCK CONSIDERATIONS 

The Windows loader utilizes a synchronization mechanism called loader lock to effectively prevent race situations 
that may occur during the loading of DLLs. Adaptive DLL hijacking is a technique used to prevent deadlocks or 
crashes. It achieves this by reducing interactions with the loader lock. This is done by either delaying important 
operations to different threads or using hooks to seize control after the loader has processed the DLL. 

KOPPELING 

Tools like Koppeling simplify and automate the process DLL hijacking by replicating export tables to redirect 
functionality to a genuine DLL. Koppeling works by tampering a target DLL Image Export Directory and replacing it 
with another forwarding all the functions to the legitimate DLL.   

 

11 Landers, ‘Adaptive DLL Hijacking’. 
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Figure 15: DLL tampered with exported functions (source: cocomelonc12) 

 

The tool works by adding a section named “.rdata2“, where it places a new Export directory with the forwarded 
exports. Then it proceeds to modify the PE Optional Headers to adjust the pointers to the new EAT. 

 
Figure 16: New section added to the PE 

  

 

12 cocomelonc, ‘DLL Hijacking with Exported Functions. Example’. 
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B. BRING YOUR OWN VULNERABLE DRIVER (BYOVD) 

The Bring Your Own Vulnerable Driver (BYOVD) technique is a method used by attackers to exploit Windows 
systems by leveraging drivers that are inherently vulnerable or poorly secured. This approach capitalizes on the 
elevated privileges that drivers typically possess to manipulate the operating system at a low level, which can bypass 
security mechanisms that would normally protect critical system components. 

In the BYOVD approach, attackers typically begin by identifying an existing driver with vulnerabilities or by crafting 
a malicious driver designed to target specific weaknesses in the system. The driver is then installed on the target 
system, which may involve deceiving a user into installing it, exploiting another system vulnerability for installation 
without consent, or utilizing social engineering techniques. 

Once installed, the driver is used to execute arbitrary code with elevated privileges, bypassing the security 
mechanisms that guard less privileged operations. This can include running malicious payloads, altering system 
configurations, or disabling security software to evade detection. The goal varies but often involves stealing data, 
monitoring system activity, creating a persistent backdoor for future access, or spreading further malware within the 
network. 

Common actions performed using the Bring Your Own Vulnerable Driver (BYOVD) technique include: 

1. Disabling Digital Signature Enforcement (DSE): This action allows the attacker to load custom or 
unsigned drivers that could otherwise not be executed due to Windows' security checks. 

2. Disabling Protected Process Light (PPL): By disabling PPL, attackers gain the capability to modify or 
interact with processes that have higher protection levels, such as security services, which may hold 
sensitive data (i.e, lsass.exe). 

3. Disabling Event Tracing for Windows (EtwTi): This step allows an attacker to evade detection as it 
prevents the system from logging security-relevant events that could provide telemetry to an EDR or human 
defenders. 

4. Loading Custom or Unsigned Drivers: Once the above security mechanisms are disabled, attackers 
proceed to load malicious drivers, which can then execute arbitrary code with kernel privileges, leading to a 
full system compromise. 

ADDRESSING DSE 

DSE BYPASS VIA TIMESTAMP FORGING 

Despite Microsoft's efforts, certain policy loopholes have been exploited by attackers. Notably, a significant loophole 
exists around the signing of kernel-mode drivers. Microsoft's policy, which was updated with Windows 10 version 
1607, stipulates that new kernel-mode drivers must be signed via the Windows Hardware Developer Center 
Dashboard portal. However, exceptions were made for drivers: 

• From systems upgraded from previous versions of Windows before version 1607. 

• On systems where Secure Boot is disabled. 

• That were signed with certificates issued before July 29, 2015, provided these certificates chain back to a 
supported cross-signed certificate authority. 
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These exceptions have been exploited using tools like HookSignTool13 and FuckCertVerifyTimeValidity14 to forge 
driver signatures, bypassing the need to submit them for validation to Microsoft. These tools manipulate the signing 
process to backdate signatures or to use expired certificates that are still technically valid, allowing malicious drivers 
to be installed on Windows systems without raising immediate alarms. 

Later on, other tools were made available, like namaszo MagicSign and PIKACHUIM FakeSign. 

DSE BYPASS VIA ARBITRARY MEMORY READ/WRITE 

As we already mentioned, bypassing DSE typically involves exploiting a weakness in a genuine Extended Validation 
(EV) signed driver to manually map an unsigned, "driverless" driver, which then alters kernel memory to disable 
DSE. This is the major method for bypassing DSE. If you try to load an unsigned driver without first deactivating DSE, 
you will encounter an error, especially error 0xC0000428, which indicates that the image hash you are trying to load 
is illegal. 

The usage of the following commands is the way that is officially recommended for disabling DSE for the purposes of 
testing: 

bcdedit.exe /set TESTSIGNING ON 
bcdedit.exe /set TESTSIGNING OFF 

Beginning in March 2022, Microsoft has implemented a new feature in Windows Defender that is referred to as the 
vulnerable driver blocklist. This function inhibits the loading of drivers that have been assessed as being particularly 
dangerous. Additionally, Microsoft has a policy of aggressively revoking certificates that have been discovered to 
have been compromised, categorizing updates of this nature as "quality improvements," such as update KB5013942. 
The error code 0xC0000603, which stands for STATUS_IMAGE_CERT_REVOKED, will be displayed whenever an attempt is 
made to load a driver that has a certificate that has been revoked. This will cause public solutions that circumvent 
DSE to become progressively non-functional. 

It is important to locate the virtual address of the CI!g_CiOptions in the kernel memory in order to circumvent the 
DSE. To determine whether unsigned drivers are allowed to load, this system variable is used. Putting this byte to 
zero will turn off the DSE command. The most basic method is to make use of a local kernel debugger, which offers 
the most recent symbols for the kernel and the modules that are associated with it, such as CI.dll. 

Using a local kernel debugger, for instance, the instructions that would be used to locate and edit the CI!g_CiOptions 
would be as follows: 

lkd>.symfix  
lkd>.reload  
lkd> db The CI!g_CiOptions L1  
FFFFF8067D1393B8 0F  

The output displays the current DSE value in hexadecimal and provides the virtual address of the CI!g_CiOptions that 
is located in kernel memory. To turn off the DSE: 

kd> db CI!g_CiOptions  
kd> ed CI!g_CiOptions 0 0  

 

13 Wang, ‘Jemmy1228/HookSigntool’. 

14 hzqst, ‘Hzqst/FuckCertVerifyTimeValidity’. 
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The first byte at that address is set to zero by these operations, which effectively disables DSE's functionality. 

In the same way that an internal C++ DLL might, kernel drivers have direct access to the memory utilized by the 
kernel. The Blue Screen of Death (BSOD) is a potential occurrence if the address being updated is wrong. 

Typically, an attacker aiming to bypass Windows' Digital Signature Enforcement (DSE) might exploit a signed driver 
that has arbitrary kernel memory read/write capabilities. The strategy involves using the vulnerable driver to access 
and modify specific system variables—namely g_CiEnabled or g_CiOptions—located within the kernel memory. The 
objective is to overwrite these variables with the value 0x0, effectively disabling DSE and allowing the loading of a 
malicious driver. Following the loading of the unauthorized driver, it is critical to promptly restore the original value 
of the DSE-related variable. This quick restoration is crucial because DSE is safeguarded by PatchGuard, which is 
designed to detect and respond to unauthorized modifications to kernel security settings. Although the process 
might seem straightforward, the challenge lies in accurately locating the g_CiEnabled or g_CiOptions variables, as they 
are not readily accessible or exported. 

ADDRESSING VBS 

Leveraging a vulnerable driver to temporarily disable Device Security Enforcement (DSE), Protected Process Light 
(PPL), or remove ETW providers can already be sufficient for offensive purposes, as it allows for the loading of a 
malicious driver with minimal detection. 

However, the complexity of this approach on systems protected by VBS is wildly different from systems that are not 
protected by such technology. How feasible is it to bypass these enhanced security measures? 

Both Adam Chester15 and Omri Misgav16 have addressed one of the fundamental changes introduced by VBS already 
back in 2022, where they discussed the implications of Kernel Data Protection (KDP) as a mitigation for the DSE 
bypass utilizing the well-known patch of the g_CIOptions global.  

In a nutshell, VBS provides a hypervisor-protected environment running a secure kernel. It uses APIs like 
MmProtectDriverSection to protect memory regions from being modified by code running in Ring-0. This protection 
extends to kernel data structures and configuration variables like g_CiOptions. 

CUSTOM CALLBACK OR CI.DLL PATCHING  

However, attackers can still bypass VBS protections by patching the kernel directly. Instead of modifying the 
g_CiOptions global, the approach is to patch the functions, stored in CI.dll, like CiCheckPolicyBits and 
CiValidateImageHeader, that are responsible of checking driver signing, or directly the callback 
nt!CiValidateImageHeader. 

This is done by locating the PTE related to the virtual address of CiValidateImageHeader, modifying the memory 
protection (write bit) of the PTE to make it writeable. Once the memory is writeable, it is possible to overwrite the 
target function with a simple return instruction (xor rax, rax; ret), allowing unsigned drivers to load by bypassing 
signature checks. The same strategy can be used in combination with a Vulnerable Driver.  

PAGE SWAPPING 

 

15 ‘g_CiOptions in a Virtualized World’. 

16 Misgav, ‘The Swan Song for Driver Signature Enforcement Tampering’. 
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Even though writing to CI!CiOptions is no longer possible, its value can still be changed. The variable is accessed via a 
virtual address, with the translation to a physical address occurring each time. The translation result can be altered 
instead. 

By swapping the physical pages from a KDP-protected page to one under control, complete control over the memory 
is regained. This involves changing the Page Frame Number (PFN) in the Page Table Entry (PTE), effectively altering 
the pointer to a different physical page. 

The virtual address of the PTE for any given virtual address can be calculated, avoiding the need to traverse all the 
page tables each time. The page tables are in a region of virtual memory used by the Windows Kernel to manage 
paging structures, known as the “PTE Space”. Starting with Windows 10 Redstone, the PTE Base is randomized by 
Kernel Address Space Layout Randomization (KASLR). Previous research17 has demonstrated a reliable method to 
locate this base. 

Executing this method requires kernel read and memory allocation primitives in addition to writing capabilities. 

ADDRESSING HVCI 

At this point, it is probably useful to clarify that VBS and HVCI are not the same. VBS provides a foundational security 
layer that uses hardware virtualization to create an isolated, secure region of memory, which can host various 
security services. In contrast, HVCI is a specific security feature that operates within the VBS framework. 

There is sometimes confusion between the two as many sources mistakenly conflate these two technologies, leading 
defenders to assume they are interchangeable. While HVCI indeed operates under the VBS umbrella, it requires 
distinct configuration to be enabled. HVCI uses the virtualization capabilities provided by VBS to enforce strict code 
integrity policies, ensuring that only signed and verified code can execute in kernel mode, thus significantly 
enhancing the security posture against kernel-level threats.  

In a nutshell, HVCI ensures: 

• Pages marked as Read-Execute cannot be made writable. 

• Pages marked as Read-Write cannot be executed, complicating memory patches. 

Researchers (Cr4sh, VollRagm, Woravit) have already proposed several methodologies to execute unsigned code 
even when HVCI is enabled.  

[POTENTIAL*] LEVERAGING LARGE PAGES 

One possible bypass strategy involves the utilization of large pages in Windows, which are primarily meant to 
optimize memory allocation for large datasets by reducing page table entries and thus accelerating memory access 
times. Large pages can be managed to accommodate both the .text and .data sections of a driver in a single page. As 
page protection is applied on a page-basis, this implies that the large page would necessarily be both Writeable, to 
accommodate the .data section, and eXecutable, to accommodate the .text section.  

The core of the technique involves modifying a Registry key related to the windows Memory Manager, which forces 
the kernel to load certain drivers into large pages during the system initialization phase using the 

 

17 Misgav, ‘Turning (Page) Tables’. 
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MiMapSystemImageWithLargePage function. By altering the page properties, one can inject executable shellcode into the 
.data section of these drivers without the need for additional memory allocation.  

To demonstrate the application of this method, VollRagm uses the beep.sys driver, traditionally responsible for 
simple hardware interactions, to execute custom shellcode, effectively bypassing DSE. Depending on how Large 
Pages are handled with HVCI enabled, this technique could offer a bypass strategy (*unconfirmed). 

LEVERAGING KERNEL ARBITRARY R/W TO HIJACK A USER-MODE THREAD 

On HVCI-enabled targets, executing custom kernel code is no longer feasible, even with advanced local privilege 
escalation exploits that offer powerful arbitrary memory read/write capabilities. A data-only attack can be used to 
overwrite the process token, gain Local System privileges, and load any legitimate third-party WHQL-signed driver 
that provides access to I/O ports, physical memory, and MSR registers.  

Another approach is to use an arbitrary Kernel Read/Write to hijack the execution context of a user-mode thread by 
overwriting its stack to execute a custom ROP chain. For this purpose, Cra4sh developed KernelForge18. 

Kernel Forge uses a straightforward approach without innovative exploitation techniques, offering a convenient 
library for third-party projects. Here's a step-by-step process: 

1. Create a New Event and Dummy Thread: The dummy thread calls WaitForSingleObject() to enter a wait 
state. This results in a specific call stack structure. 

2. Locate _KTHREAD Structure: The main thread uses NtQuerySystemInformation() with 
SystemHandleInformation to find the dummy thread's _KTHREAD structure address. 

3. Obtain Kernel Stack Information: Use arbitrary memory read primitives to retrieve StackBase and 
KernelStack fields of the _KTHREAD structure. 

4. Identify Return Address: Traverse the dummy thread's kernel stack to locate the return address from 
nt!NtWaitForSingleObject() back to the system calls dispatcher function, nt!KiSystemServiceCopyEnd(). 

5. Construct ROP Chain: Create a ROP chain to call the desired kernel function with specified arguments, save 
its return value in user-mode memory, and terminate the dummy thread gracefully using 
nt!ZwTerminateThread(). Overwrite the previously located return address with the address of the first ROP 
gadget. 

6. Trigger ROP Chain Execution: Set the event object to a signaled state, resuming the dummy thread and 
triggering the ROP chain execution. 

This technique is reliable and straightforward, though it has some limitations: 

• It cannot call nt!KeStackAttachProcess(). 

• It only operates at passive IRQL level. 

• It cannot register kernel mode callbacks (e.g., nt!IoSetCompletionRoutine(), 
nt!PsSetCreateProcessNotifyRoutine()). 

The Kernel Forge achieves exactly this by using two main components: 

 

18 Oleksiuk, ‘Cr4sh/KernelForge’. 
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1. A library implementing the core functionality required to call arbitrary kernel functions. 

2. A library for delegating arbitrary memory read/write operations, which can be a local privilege escalation 
exploit or a wrapper around a third-party WHQL-signed driver. For this project, I use a variation of 
WinIo.sys that provides full physical memory access and works even with HVCI enabled. 

It should be noted that, as the technique relies heavily on ROP, it won’t work on systems protected by CET/kCET. 

LEVERAGING KERNEL ARBITRARY R/W TO MANIPULATE THE SSDT 

This method starts by designing a way to access physical memory from a user-mode process without using a 
vulnerable driver. It involves manipulating the Page Directory Page Table (PDPT) entries to map virtual addresses 
directly to physical addresses. 

 

The process begins by identifying the PML4 (Page Map Level 4) address. This address can be found from the 
DirectoryBase value within the nt!EPROCESS object, which is a physical address pointer. 

Next, entries in the PDPT are created to map virtual addresses to physical addresses, allowing access to up to 4GB of 
physical memory. The physical address is then converted to a virtual address using the nt!MmGetVirtualForPhysical 
function. Once the virtual address of the page table is obtained, entries in the Page Directory (PD), Page Table (PT), 
and PDPT are modified to map 1GB blocks of physical memory to the virtual address space. 

This setup enables access to the entire guest physical memory without needing to switch to kernel mode. Manual 
page walking is used to access kernel memory or other process memory directly from the mapped memory. The 
mapped memory remains invisible in process viewers because the operating system is unaware of this mapping. 
However, this invisibility means the OS might replace the mapping if the process allocates more memory, posing a 
risk of memory collisions. 
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To call a kernel function, the System Service Descriptor Table (SSDT) entry for a specific system call (e.g., 
NtCreateTransaction) is modified to jump to another kernel function. The SSDT memory page, protected by Secure 
Kernel, requires remapping to writable memory pages to avoid detection by PatchGuard. This involves duplicating 
PDPT, PDP, and PT entries and using VirtualLock to prevent paging out. 

Finally, to handle a process creation callback, woravit’s approach involves reusing code from signed drivers like the 
Process Monitor driver (version 3.91), which lacks Control Flow Guard (CFG). This allows modifying Import Address 
Tables (IATs) and exception handlers. Process creation callback arguments are sent to a user-mode application via 
FltSendMessage. Exception handling in Windows x64 involves modifying UNWIND_INFO to manage exceptions and 
forward arguments to user-mode applications. This requires understanding and manipulating structures like 
C_SCOPE_TABLE and C_SCOPE_TABLE_ENTRY. 

To ensure kernel wait for user-mode processing, synchronization is achieved by modifying a mutex object to an 
event object. Functions like KeReleaseMutex are modified to continue exception searches until a handler ends the 
exception. The user-mode application receives messages using FilterConnectCommunicationPort and FilterGetMessage, 
handling kernel memory access via physical memory operations and signaling completion using KeSetEvent. 

Note: This technique, based on patching a SSDT entry with page table manipulation does not work with Intel VT-rp19. 

  

 

19 ‘LSSEU20_kernel Integrity Enforcement with HLAT in a Virtual Machine_v3.Pdf’. 
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C. WINDOWS NTFS ISSUES 

WIN32 TO NT  

The conversion between NT (Windows NT kernel) paths and DOS (Win32) paths is essential due to historical 
compatibility needs, differences in path format, security requirements, operational efficiency, and consistency across 
subsystems. Legacy applications, designed for DOS/Win32 environments, rely on these conversions to function 
correctly on modern Windows systems. DOS paths, using drive letters and backslashes, must be converted to the NT 
kernel's uniform naming convention to ensure secure, unambiguous path handling. 

For this reason, the Win32 API layer convert file paths to NT paths, involving several internal functions to handle this 
translation. These APIs include the CreateFile API, which internally calls functions like 
RtlDosPathNameToRelativeNtPathName_U or RtlDosPathNameToRelativeNtPathName_U. This process ensures compatibility 
with the NT kernel's IO manager. 

There are 7 documented Path types handled by the Win32 API layer, as described in the table below. 

PATH TYPE FORMAT EXAMPLES 

DRIVE ABSOLUTE X:\path C:\Windows\System32, D:\Games 

DRIVE RELATIVE X:path C:Users\Public, D:Documents 

ROOTED \path \Windows\System32, \Users\Public 

RELATIVE path Documents\Files, ..\Users\Public 

UNC ABSOLUTE \\server\share\path \\server\share\Documents, \\192.168.1.1\share\Files 

LOCAL DEVICE \\.\path \\.\COM1, \\.\pipe\mypipe 

ROOT LOCAL 
DEVICE 

\\?\path \\?\C:\Windows\System32, \\?\UNC\server\share\Documents 

Table 3: Win32 Path Types 

PATH CANONIZATION 

Path canonicalization is the process of standardizing and normalizing file paths to ensure consistency and eliminate 
ambiguities. This is crucial for correctly processing paths through the NT APIs. The implementation applies the 
following rules to canonicalize paths: 

RULE DESCRIPTION 

CONVERT 
FORWARD 
SLASHES 

Convert all forward slashes (character U+002F) to backslashes (character U+005C). 

COLLAPSE PATH Collapse repeating runs of path separators into one. 
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SEPARATORS 

SPLIT UP PATH 
ELEMENTS 

Split up path elements and: 

• Remove elements where the name is only a single dot, signifying the current directory. 
• Remove the previous path element where the name is two dots unless it's already at 

the root of the path type. This allows relative paths to refer to a parent directory. 

TRAILING PATH 
SEPARATOR 

If the last character is a path separator, leave it as is in the result. 

TRAILING 
SPACES OR DOTS 

Remove any trailing spaces or dots from the last path element, assuming that it isn’t a single or 
double dot name. 

Table 4: Path Canonization Rules20 

Regarding the last point, NTFS allows a few tricks that can be abused to create files and directories allowing trailing 
spaces and dots, leading to several misbehaviors. We will talk about these strange behaviors in the NTFS Tricks 
section. 

It's also important to note that using Rooted paths allows for the inclusion of characters that would typically be 
considered illegal. Each file system imposes certain restrictions on acceptable characters to ensure ease of use, such 
as disallowing NUL characters in APIs based on C-style null-terminated strings. The two most common file systems 
on NT systems, NTFS and FAT, have more stringent limitations on valid characters. The following table highlights 
characters that are prohibited in standard filenames, with anything in red indicating banned characters. 
 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI 

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US 

2 
 

! " # $ % & ' ( ) * + , - . / 

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 

4 @ A B C D E F G H I J K L M N O 

5 P Q R S T U V W X Y Z [ \ ] ^ _ 

6 ` a b c d e f g h i j k l m n o 

7 p q r s t u v w x y z { | } ~ DEL 

Table 5: NTFS Compliant Character's Set 

 

20  Foreshaw, J, ‘Project Zero’. 
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While NTFS and FAT file systems do not allow illegal characters in paths on disk, at least not when added directly via 
the OS, paths can still contain these characters if they don't interact with the NTFS driver. For example, when the 
object manager is involved, such as through redirection via a mount point, only the following characters are 
considered illegal in the object manager: 
 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI 

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US 

2 
 

! " # $ % & ' ( ) * + , - . / 

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 

4 @ A B C D E F G H I J K L M N O 

5 P Q R S T U V W X Y Z [ \ ] ^ _ 

6 ` a b c d e f g h i j k l m n o 

7 p q r s t u v w x y z { | } ~ DEL 

Table 6: NT Object Manager  Compliant Character's Set 

NTFS TRICKS 

Important research has already been performed on several issues affecting NTFS21 (New Technology File System). 
These issues, while not always directly exploitable, can lead to security vulnerabilities due to their non-intuitive 
nature. 

ABUSING ALTERNATE DATA STREAMS (ADS) 

Alternate Data Streams (ADS), as an example, are a feature of the NTFS file system that allow multiple data streams 
to be associated with a single file or directory. While ADS can be used for legitimate purposes, such as storing 
metadata, they are often exploited by attackers for malicious activities. ADS enable the concealment of malicious 
payloads within seemingly benign files, making detection by traditional file inspection methods difficult. The 
primary file appears unmodified, while the malicious data resides in an alternate stream, which many security tools 
do not check, allowing attackers to bypass antivirus and other endpoint protection systems. 

Attackers commonly use ADS to embed malicious code within legitimate files, effectively hiding harmful executables 
or scripts. For instance, an attacker might append a malicious executable to a harmless text file (e.g., 
benign.txt:hidden.exe). Additionally, ADS can store hacking tools, data exfiltration scripts, or stolen data, keeping 
them hidden from plain view. This allows attackers to maintain a stealthy presence on a compromised system and 
execute the hidden payloads without making the primary file appear suspicious.  

 

21 ‘Pentester’s Windows NTFS Tricks Collection’. 
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In general, the ability to use ADS for executing hidden payloads and creating persistence mechanisms makes them a 
potent technique for stealthy and persistent attacks on NTFS file systems.  

CONNECTING THE DOTS 

As aforementioned, a few tricks leverage the path canonization rule below to create paths that confuse file system 
parsers, making them difficult to navigate or detect: 

TRAILING 
SPACES OR DOTS 

REMOVE ANY TRAILING SPACES OR DOTS FROM THE LAST PATH ELEMENT, ASSUMING THAT 
IT ISN’T A SINGLE OR DOUBLE DOT NAME. 

This means creating directories that are ending with trailing spaces and dots, which would “bypass” the path 
canonicalization rule above. This kind of directories are usually not possible to create easily via the Win32 API layer.  

 
Figure 17: Directories not possible to create normally 

These tricks exploit the special directory entries like “.” and “..” that represent the current and parent directory, 
respectively. Indeed, it is possible to create these paths by appending “ ::$INDEX_ALLOCATION” to the filename, 
forcing the creation of directories that have confusing names (i.e., contains and ends with dots and spaces). 
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Figure 18: Directories have been created successfully 

For instance, these types of paths can trigger a range of unusual system behaviours. One example is how Windows 
Explorer responds when attempting to delete them, resulting in an "Access Denied" error.   

 
Figure 19: Directories with trailing dots and spaces cannot be eliminated via Explorer 
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Attempting the deletion from a command prompt or PowerShell prompt yields the same result: 
 

 
Figure 20: Directories with trailing dots and spaces cannot be eliminated via PowerShell 

Another interesting fact is that it’s possible to combine this trick with directory junctions, which can be manipulated 
to obscure the actual destination path, which can be used to deceive both users and programs about the true location 
of the destination files. 

In fact, when a junction is created correctly, the destination path is displayed alongside the directory name. 

 
Figure 21: Normal Junction, the destination path is visible in square brackets 
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Figure 22: Ellipsis Junction, hides the destination path due to path confusion 

Similar approach can be used to create non-listable Data streams, which won’t be enumerable even with specialised 
tools.  
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IV. DISCUSSION 

A. THE OT CYBER KILL CHAIN 

To understand the approach red teamers should take to emulate the operational aspects of Stuxnet, it is useful to 
examine a general OT (Operational Technology) cyber kill chain. This framework outlines the stages of a cyberattack 
targeting industrial control systems and critical infrastructure, providing insights into the tactics, techniques, and 
procedures (TTPs) that can be employed to replicate such sophisticated threats.  

The ICS/OT Cyber Kill Chain consists of two major phases22 that outline the steps an adversary takes to compromise 
industrial control systems (ICS) and operational technology (OT) environments. 

The first phase is primarily focused on gaining access to the ICS network and gathering the necessary information to 
understand and manipulate the target system. This phase is like traditional cyber espionage and involves several key 
steps. Initially, attackers conduct detailed reconnaissance to gather information about the ICS environment. This 
includes researching publicly available information, using tools like Google and Shodan, and mapping network 
topologies to identify vulnerabilities and targets within the ICS infrastructure. 

 

22 ‘The Industrial Control System Cyber Kill Chain’. 
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Figure 23: OT Cyber Kill Chain - Phase 1 

In the preparation and weaponization step, attackers create or modify tools and exploits to target specific 
vulnerabilities identified during the reconnaissance phase. This could involve crafting malicious documents or files, 
preparing spear-phishing emails, or developing custom malware tailored to the ICS environment. The attackers then 
deliver their payload to the target ICS network using common methods like phishing emails, exploiting 
vulnerabilities in public-facing services, or leveraging compromised supply chains. Once the payload is delivered, the 
attackers exploit vulnerabilities to gain initial access to the network. After successfully gaining access, the attackers 
establish command and control (C2) channels to maintain persistence and manage their foothold in the network. 
They may use various techniques to hide their communications and ensure continuous access to the compromised 
systems. During the sustainment and entrenchment phase, attackers deepen their presence within the network, 
moving laterally to other systems and gathering more intelligence. They install additional tools and backdoors to 
ensure long-term access and to prepare for the final stage of the attack. 
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Figure 24: OT Cyber Kill Chain - Phase 2 

The second phase focuses on developing and deploying the attack to achieve the intended impact on the ICS 
environment. In the attack development and tuning step, attackers use the information gathered during the first 
phase to develop a specific capability that can affect the ICS in a meaningful way. This involves writing and testing 
malware or exploit code that targets the specific ICS components identified earlier. Development typically occurs in 
isolated environments that mimic the target ICS to ensure the attack's effectiveness and reliability. Before deploying 
the attack, the attackers validate their tools and techniques against similar systems to ensure they work as intended. 
This might involve acquiring ICS equipment and software for testing purposes. Validation is crucial to minimize the 
risk of detection and to ensure the attack will have the desired impact when executed. The final step is the actual 
deployment of the attack within the target ICS environment. The attackers deliver their malicious payload, modify 
system functionality, or directly manipulate ICS processes to achieve their goals. This could involve causing physical 
damage to equipment, altering production processes, or disrupting operations. The complexity of this phase depends 
on the security measures in place and the specific objectives of the attackers. 

 

B.  DLL HIJACKING REVISITED 

We have extensively redesigned the Koppeling framework to align with the process employed by Stuxnet, 
consequently augmenting its functionalities to cater to advanced cyber-security protocols. This reimplementation 
brings about numerous notable improvements to the framework, mostly aimed at permitting dynamic modifications 
in DLL handling. These upgrades draw parallels to the complex techniques employed in the Stuxnet malware. 

The primary developments of the new framework are centered on two key objectives: 

• Automate the generation of a proxy DLL while also tampering with some selected exports, both modifying 
their runtime behavior or patching the input and output parameters. 

• Tamper with an existing DLL entry point to execute malicious code on loading, without altering its exports. 
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TAMPERING UNPROXIED EXPORTS  

As the original Koppeling, the framework detects and retrieves the exact DLL that the user wants to focus on. This 
step is required as it establishes the foundation for changing the DLL by proxying or customizing its functionality 
based on specific requirements. 

The framework creates a new Portable Executable (PE) after acquiring the appropriate DLL. In this new PE, the user 
should implement the export “patching” logic that suits a specific need. The framework then combines the newly 
generated exports with the pre-existing exported functions of the original DLL as forwards. This merging method 
preserves all original functionalities while integrating the new or modified exports.  

 

Figure 25: DLL Tampered with the new Koppeling framework 

By incorporating these improvements, our improved Koppeling framework preserves the complete notion of DLL 
proxying and even extends its functionality to accommodate bespoke implementations of export wrappers. These 
customized implementations aim to replicate and potentially improve upon the usermode rootkit functionalities that 
were famously utilized by Stuxnet. As a result, they provide a robust tool for security researchers and professionals 
to simulate and analyze intricate malware behaviors in a controlled setting. 

The patching template logic may be arbitrarily complex, depending on the attacker’s needs. As a bare minimum, it 
should be designed as a variation of the very simple template below: 

typedef PVOID(WINAPI* WinApi)(...); 
 
PVOID PatchParams(...) { 
    // Load target DLL 
    HMODULE hMod = LoadLibraryA("<TARGET-DLL>"); 
    if (hMod == NULL) { 
        return 0; 
    } 
    // Get target function address 
    WinApi api = (WinApi)GetProcAddress(hMod, "<TARGET-FUNCTION>"); 
 
    // Execute original DLL function with tampered params 
    PVOID rax = api(...); 
 
    // Return original DLL function ret value 
    return rax; 
} 
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PVOID PatchReturn(...) { 
    // Load target DLL 
    HMODULE hMod = LoadLibraryA("<TARGET-DLL>"); 
    if (hMod == NULL) { 
        return 0; 
    } 
    // Get target function address 
    WinApi api = (WinApi)GetProcAddress(hMod, "<TARGET-FUNCTION>"); 
 
    // Execute original DLL function with tampered params 
    PVOID rax = api(...); 
 
    // Patch return value 
    rax = (PVOID)0x1337; 
 
    // Return patched ret value 
    return rax; 
} 
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C. INJECTION WITHOUT INJECTION – RPCEXEC 

To create a general way to execute local and remote code, we designed a relatively obscure method of code 
execution, which we internally refer to as RpcCraft (Self) RpcExec (Remote Process). This technique leverages a 
methodology well-known among exploit developers, abusing RPC (Remote Procedure Call) server calls such as 
NdrServerCall2 or NdrServerCallAll to execute arbitrary code. 

RPC OVERVIEW 

Windows RPC (Remote Procedure Call) facilitates the execution of distributed client/server function calls. With 
Windows RPC, a client can invoke server functions just as if they were local function calls. 

Server calls are part of this infrastructure and are used by the RPC runtime to handle incoming RPC calls. These 
functions are typically generated by the Microsoft IDL (Interface Definition Language) compiler and are responsible 
for unmarshaling (i.e., deserializing) the parameters from the network buffer and then invoking the appropriate 
server-side function. 

 
Figure 26: Basic RPC Flow23 

The client/server program sends the calling parameters or return values to the lower-level Stub function. The Stub 
function is responsible for encapsulating the data into the NDR (Network Data Representation) format. 

 

23 stevewhims, ‘How RPC Works - Win32 Apps’. 
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In this context, the typical sequence of operations for server call is as follows: 

• Unmarshaling: The function reads the incoming data packet and converts the serialized parameters into 
their native in-memory representation. 

• Dispatching: It then calls the server-side function with these parameters. 

• Marshaling: After the server-side function completes, converts the function's return values and output 
parameters back into a network-friendly format to send back to the client. 

The RPC Protocol Sequence is a predefined string that specifies the protocol the RPC runtime will use to transfer 
messages, including the transport and network protocol. Microsoft supports several RPC protocols, such as: 

• Network Computing Architecture connection-oriented protocol (NCACN) 

• Network Computing Architecture datagram protocol (NCADG) 

• Network Computing Architecture local remote procedure call (NCALRPC) 

Common protocol sequences include: 

• ncacn_ip_tcp: Connection-oriented TCP/IP 

• ncacn_http: Connection-oriented TCP/IP using HTTP proxy 

• ncacn_np: Connection-oriented named pipes 

• ncadg_ip_udp: Datagram-based UDP/IP 

• ncalrpc: Local Procedure Calls 

RPC interfaces define the methods and parameters for communication, written in an Interface Definition Language 
(IDL) file. These are compiled by the Microsoft IDL compiler (midl.exe) into header and source code files for server 
and client use. 

Binding in RPC creates a logical connection between a client and a server, represented by a binding handle. There are 
three types of binding handles: implicit, explicit, and automatic. Implicit handles are used for single-threaded 
applications, while explicit handles are thread-safe and suitable for multi-threaded applications. 
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Figure 27: Types of Binding 

Bindings also provide a way to implement an authentication layer. Anonymous bindings allow any client to connect, 
while authenticated bindings ensure only verified clients can connect. This is enforced using registration flags, 
security callbacks, and authentication information24. 

RPC_STATUS CALLBACK SecurityCallback(RPC_IF_HANDLE hInterface, void* pBindingHandle) 
{ 
    return RPC_S_OK; // Always allow anyone 
} 
 
rpcStatus = RpcServerRegisterIf2( 
    Iface_spec_s, 
    NULL, 
    NULL, 
    RPC_IF_ALLOW_LOCAL_ONLY, 
    RPC_C_LISTEN_MAX_CALLS_DEFAULT, 
    (unsigned)-1, 
    SecurityCallback 
); 

It’s useless to say that the RPC infrastructure offers a flexible platform for code execution purposes.  

 

 

 

 

24 ‘Offensive Windows IPC Internals 2’. 
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ABUSING SERVER CALLS FOR EXECUTION 

As easily imaginable, within RPCRT4.dll, numerous functions commonly used by the RPC infrastructure are 
implemented as wrappers to dynamically invoke functions pertaining to server functionalities and exposed to the 
client via an interface definition. As such, many of these functions invoke code using what we can refer to as COP 
gadgets (call REG). 

Examples of these functions include NdrServerCall2, NdrServerCallAll, and NdrServerCallNdr64 (an alias of 
NdrServerCallAll). The difference between NdrServerCall2 and NdrServerCallAll is that the former operates 
synchronously, while the latter uses a worker thread to execute. 

These functions take only one argument, a pointer to an RPC_MESSAGE structure. As an example, the following is the 
signature of NdrServerCall2: 

void NdrServerCall2( 
  PRPC_MESSAGE pRpcMsg 
); 

The function prepares four arguments. The first two arguments are typically non-zero when used in DCOM 
interfaces, indicating that NdrServerCall2 is likely not employed by OLE objects. The third parameter is the RPC 
message, and the fourth parameter is a flag that tracks the phase of the stub. 

 
Figure 28: NdrServerCall2 Instructions 

 Execution then steps to NdrStubCall2, which is the function responsible for unmarshalling, performing checks 
against the Message, taking the data, and dispatching it to the server. Briefly following the flow of the function, it is 
possible to see that execution finally arrives at the Invoke function. 

 
Figure 29: NdrStubCall2 Calling Invoke 
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Analyzing the Invoke function, it is possible to see that it calls an arbitrary function pointer, previously placed in the 
r10 register, via a call r10 instruction. The function RPCRT4!RpcInvokeCheckICall is responsible for verifying whether 
the function pointer is present in the Control Flow Guard (CFG) bitmap of the executing process. 

 
Figure 30: Invoke Function Executing Arbitrary Function Pointer 

This, of course, is not the only function executing the Invoke function. This can be easily observed by reverse 
engineering the rpcrt4.dll and examining references to the function itself. 

 

The advantage of these types of functions is that they provide the ability to call an arbitrary function with an 
arbitrary number of parameters, all encapsulated within a convenient structure, the RPC_MESSAGE structure. This can 
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be particularly useful in scenarios where it is necessary to execute a function that accepts more than four parameters 
in a remote thread. However, obtaining the correct RPC_MESSAGE structure to trigger code execution is not 
straightforward. The NdrServerCall* functions are quite complex, and many things can go wrong during execution. 

typedef struct _RPC_MESSAGE { 
  RPC_BINDING_HANDLE     Handle; 
  unsigned long          DataRepresentation; 
  void                   *Buffer; 
  unsigned int           BufferLength; 
  unsigned int           ProcNum; 
  PRPC_SYNTAX_IDENTIFIER TransferSyntax; 
  void                   *RpcInterfaceInformation; 
  void                   *ReservedForRuntime; 
  RPC_MGR_EPV            *ManagerEpv; 
  void                   *ImportContext; 
  unsigned long          RpcFlags; 
} RPC_MESSAGE, *PRPC_MESSAGE; 

The RPC_MESSAGE structure’s first argument is a HANDLE, specifically an RPC_BINDING_HANDLE. During development, we 
aimed to avoid binding the application to an interface manually, as this can be error prone. A relatively old browser 
exploitation trick25 suggested that this value is usually a virtual table pointer maintained by RPCRT4. In our tests, we 
set this value to NULL and still managed to successfully execute the Invoke function. 

 
Figure 31: VTable Pointer Referenced in the Previous Research 

 

25 ‘Exploiting Windows RPC to Bypass CFG Mitigation’. 
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In the same research, a general structure for the RPC_MESSAGE is provided, so we decided to use it as a starting point. 

 

Figure 32: RPC_MESSAGE Structure 

Two important variables for function calls are Buffer and RpcInterfaceInformation. The Buffer stores the function's 
parameters, while RpcInterfaceInformation points to the RPC_SERVER_INTERFACE structure. The RPC_SERVER_INTERFACE 
structure contains server program interface information, with DispatchTable storing the interface function pointers 
for the runtime library and stub function, and InterpreterInfo pointing to the MIDL_SERVER_INFO structure. The 
MIDL_SERVER_INFO structure holds the server IDL interface information, and its DispatchTable (+0x4) saves the pointer 
array of the server routine functions. 

Through experimentation, however, we were experiencing quite a few unexpected crashes with various structures, 
all pointing to certain we observed that the RPC runtime (rpcrt4) maintains a few global structures, like, as an 
example, the current RPC heap base address. 

 
Figure 33: Reference to Global Variables 
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This was expected since, in our tests, we were not initializing the current process's RPC runtime context using the 
standard procedure (i.e., calling RpcBindingFromStringBindingA/W or similar). To avoid calling this function, we 
searched for alternative methods to initialize the runtime. 

We found the solution in the function PerformRpcInitialization. This function initializes all the necessary structures 
that were causing crashes, without requiring us to bind to a service. Moreover, as this function doesn’t take any 
parameter, it was also trivial to execute in both a local and remote context. 

However, as this function is not exported, we need to locate it either by searching for call instructions within the 
RpcBindingFromStringBindingA code, or via egg-hunting in the RPCRT4 .text section, or by giving the relative offset 
from the RPCRT4 image base address. 

 
Figure 34: RPC Initialization Function 

After the initialization, the function proceeded as expected. The first objective at this point was to figure out the 
interface specification that we needed to achieve code execution. 

void                   *RpcInterfaceInformation; 

For the RPC interface, both a client and Server Interface could be chosen. As the only fields populated are matching 
between the two, the two structures could be used interchangeably.  

typedef struct _RPC_SERVER_INTERFACE 
{ 
    unsigned int Length; 
    RPC_SYNTAX_IDENTIFIER   InterfaceId; 
    RPC_SYNTAX_IDENTIFIER   TransferSyntax; 
    PRPC_DISPATCH_TABLE     DispatchTable; 
    unsigned int            RpcProtseqEndpointCount; 
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    PRPC_PROTSEQ_ENDPOINT   RpcProtseqEndpoint; 
    RPC_MGR_EPV __RPC_FAR * DefaultManagerEpv; 
    void const __RPC_FAR  * InterpreterInfo; 
    unsigned int Flags ; 
} RPC_SERVER_INTERFACE, __RPC_FAR * PRPC_SERVER_INTERFACE; 
 
typedef struct _RPC_CLIENT_INTERFACE 
{ 
    unsigned int Length; 
    RPC_SYNTAX_IDENTIFIER   InterfaceId; 
    RPC_SYNTAX_IDENTIFIER   TransferSyntax; 
    PRPC_DISPATCH_TABLE     DispatchTable; 
    unsigned int            RpcProtseqEndpointCount; 
    PRPC_PROTSEQ_ENDPOINT   RpcProtseqEndpoint; 
    ULONG_PTR               Reserved; 
    void const __RPC_FAR *  InterpreterInfo; 
    unsigned int Flags ; 
} RPC_CLIENT_INTERFACE, __RPC_FAR * PRPC_CLIENT_INTERFACE; 

The DispatchTable field is the field that will store the address of the internal RPC dispatch routine that should handle 
our message. As we are directly calling NdrServerCall2, we don’t need this at all. 

typedef struct { 
  unsigned int          DispatchTableCount; 
  RPC_DISPATCH_FUNCTION *DispatchTable; 
  LONG_PTR              Reserved; 
} RPC_DISPATCH_TABLE, *PRPC_DISPATCH_TABLE; 

The InterpreterInfo field, instead, contains a pointer to a MIDL_SERVER_INFO structure. This structure is important as it 
defines the way the parameters should be unmarshalled, and the address of the API to invoke, so it’s mandatory. 

The ProcString is, by itself, a format string defining the parameters, their respective types, etc. Although Microsoft 
defines how to interpret this string, it’s not something design to be built “manually”. The easiest way to get the right 
format is to build a small RPC client and let the MIDL compiler assemble the string format based on the number of 
the desired parameters. 

typedef struct  _MIDL_SERVER_INFO_ 
    { 
    PMIDL_STUB_DESC                     pStubDesc; 
    const SERVER_ROUTINE     *          DispatchTable; 
    PFORMAT_STRING                      ProcString; 
    const unsigned short *              FmtStringOffset; 
    const STUB_THUNK *                  ThunkTable; 
    PRPC_SYNTAX_IDENTIFIER              pTransferSyntax; 
    ULONG_PTR                           nCount; 
    PMIDL_SYNTAX_INFO                   pSyntaxInfo; 
    } MIDL_SERVER_INFO, *PMIDL_SERVER_INFO; 

The MIDL_STUB_DESC should point to a valid MIDL Stub structure, which is a quite complex structure.  

typedef struct _MIDL_STUB_DESC 
    { 
    void  *                                 RpcInterfaceInformation; 
    void  *                                 ( __RPC_API * pfnAllocate)(size_t); 
    void                                    ( __RPC_API * pfnFree)(void  *); 
    union 
        { 
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        handle_t  *                         pAutoHandle; 
        handle_t  *                         pPrimitiveHandle; 
        PGENERIC_BINDING_INFO               pGenericBindingInfo; 
        } IMPLICIT_HANDLE_INFO; 
    const NDR_RUNDOWN  *                    apfnNdrRundownRoutines; 
    const GENERIC_BINDING_ROUTINE_PAIR  *   aGenericBindingRoutinePairs; 
    const EXPR_EVAL  *                      apfnExprEval; 
    const XMIT_ROUTINE_QUINTUPLE  *         aXmitQuintuple; 
    const unsigned char  *                  pFormatTypes; 
    int                                     fCheckBounds; 
    /* Ndr library version. */ 
    unsigned long                           Version; 
    MALLOC_FREE_STRUCT  *                   pMallocFreeStruct; 
    long                                    MIDLVersion; 
    const COMM_FAULT_OFFSETS  *             CommFaultOffsets; 
    // New fields for version 3.0+ 
    const USER_MARSHAL_ROUTINE_QUADRUPLE  * aUserMarshalQuadruple; 
    // Notify routines - added for NT5, MIDL 5.0 
    const NDR_NOTIFY_ROUTINE  *             NotifyRoutineTable; 
    //Reserved for future use. 
    ULONG_PTR                               mFlags; 
    // International support routines - added for 64bit post NT5 
    const NDR_CS_ROUTINES *                 CsRoutineTables; 
    void *                                  ProxyServerInfo; 
    const NDR_EXPR_DESC *                   pExprInfo; 
    // Fields up to now present in win2000 release. 
    } MIDL_STUB_DESC; 

Luckily, we don't need to populate most of these fields. The only fields worth setting are MIDLVersion, and the pfnFree 
and pfnAllocate pointers, that usually point to free and malloc, respectively. On a last crash, we discovered that the 
MIDL_SERVER_INFO.FmtStringOffset needed to be a valid pointer to a table (even if empty). 

The final RPC_MESSAGE structure looks something like the below. All fields which value has not been specified should 
be considered by default to NULL. 
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Figure 35: Final RPC_MESSAGE 

However, even though we managed to hit the Invoke function, the challenge is not finished yet. We encountered 
another obstacle in NdrGetBuffer, which occurs just after the Invoke routine has finished and execution returns to 
NdrStubCall2.  

 
Figure 36: Last Exception 
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Inspecting the faulting function reveals that the NdrGetBuffer calls the function I_RpcGetBufferWithObject;  

 
Figure 37: NdrGetBuffer calling I_RpcGetBufferWithObject 

The only object used by the function is the binding handle specified in the RPC message structure. Since it is null, no 
buffer associated with it could be recovered, leading to an error. At this point, we had two possible solutions: craft a 
fake BINDING_HANDLE that would pass the validation of I_RpcGetBufferWithObject, or handle the exception. We decided 
to postpone the former idea and check if we could handle the exception. 

It turned out that handling the exception worked well for our purposes. However, using a C++ style exception 
handler (__try / __except) made it impossible to recover the return value of the invocation. For this reason, we 
decided to set a hardware breakpoint on the instruction following the Invoke function, then register an exception 
handler that would save the return value and make it available to the program. 

int FetchReturnValue(const PEXCEPTION_POINTERS ExceptionInfo) 
{ 
    ExceptionInfo->ContextRecord->EFlags |= (1 << 16); 
    g_ReturnValue = (PVOID)ExceptionInfo->ContextRecord->Rax; 
    return EXCEPTION_CONTINUE_EXECUTION; 
} 

 

LIMITATIONS 
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This solution would not be available, of course, if we are trying to execute code in the context of a remote process. In 
that case, the best solution would be patching. The target functions we would like to patch to achieve full, 
unrestricted code execution are RpcRaiseException and RpcInvokeCheckICall. Patching RpcRaiseException will also 
allow us to prevent a potential ETW trace from being generated, which is something we would like to avoid. 

 
Figure 38: ETW Event Generated on Exception 

While the former function is exported, RpcInvokeCheckICall is not, so we needed a clever way to identify its address. 
Luckily, the Invoke function is the only one in the entire DLL that presents a specific COP gadget, which can be used 
to pinpoint its location. 
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Figure 39: Hunting COP in RPCRT4 

A nice approach is to find all potential COP instructions in the program in the form of CALL R10, then search 
backwards for another call instruction and resolve its address. To achieve this, we first implemented a function to 
Hunt for the COP instruction. 

PVOID HuntForCopInstruction(PVOID startAddress, SIZE_T size) { 
    UINT64 currentAddress = (UINT64)startAddress; 
    UINT64 endAddress = currentAddress + size; 
 
    while (currentAddress < endAddress) { 
        if (*(WORD*)currentAddress == 0xff41 && *(BYTE*)(currentAddress + 2) == 0xd2) { 
            return (PVOID)currentAddress; 
        } 
 
        currentAddress++; 
    } 
 
    return NULL; 
} 

Then, we implement a function to find for generic calls. As we know this function is implemented before the Invoke, 
we filter out positive offsets. 
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PVOID HuntForCall(PVOID startAddress, SIZE_T size, BOOL backword) { 
    UINT64 currentAddress = (UINT64)startAddress; 
    UINT64 endAddress = currentAddress + size; 
    if (backword) { 
       currentAddress = currentAddress - size; 
       endAddress = (UINT64)startAddress; 
    } 
 
    while (currentAddress < endAddress) { 
        if (*(BYTE*)currentAddress == 0xe8 &&  
            0xffff0000  <= *(DWORD*)(currentAddress+1) &&  
            *(DWORD*)(currentAddress + 1) <= 0xfffffff0) { 
            return (PVOID)currentAddress; 
        } 
        currentAddress++; 
    } 
    return NULL; 
} 

To calculate the address for a relative CALL, which is typically 5 bytes in total, use the following process: 

UINT64 CalculateCallTarget(HMODULE hMod, UINT64 callAddress) { 
    DWORD offset = *(DWORD*)(callAddress + 1) + 5; 
    DWORD relativeCallAddress = (DWORD)(callAddress - (UINT64)hMod); 
     
    DWORD targetRva = (relativeCallAddress + offset) & 0xffffffff; 
    return (UINT64)hMod + targetRva; 
} 

Once located, we can easily patch this with a simple, one byte Patch (RET), to avoid triggering CFG. 

D. EMULATED FILESYSTEM “BUG” 

For a long time, red teamers have strategically utilized ISOs to deliver payloads effectively, exploiting specific 
features that bypass certain security checks such as the Mark of the Web (MOTW) attribute. Traditionally, ISOs, 
along with CDs, have been preferred for their robustness in maintaining the integrity of the content against 
unauthorized modifications. However, as technology evolves, the usage of optical media like CDs has diminished, 
though ISOs continue to be relevant, especially among software companies for software distribution. 

ADVANTAGE OF CDFS IN SECURE SOFTWARE DEPLOYMENT 

ISO files, like virtual hard disk (VHD) files, are essentially archive files from which one can mount an emulated 
optical disc. This emulation turns the ISO into a read-only filesystem, which is a significant advantage over other 
archive formats such as ZIP files. When mounted, the contents of an ISO are presented to the operating system as if 
they were read from an actual physical medium. This characteristic inherently protects the integrity of the data, as 
the mounted filesystem is not writable, preventing any tampering with the contents post-mounting. 

Another advantage of Image files over normal archives is the ability, in Virtualized environments, to distribute the 
same content to multiple machines without copying over the file across different systems.  
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To contextualize this concept, it is possible to share a single instance of an ISO across multiple VMs in many different 
virtualized environments, such as ESXi Servers, VMSphere, or Hyper-V26. During several assessments, we found this 
solution was still broadly adopted in many OT environments to ensure consistency.  

NOT REALLY READ-ONLY FILESYSTEMS 

Despite these advantages, recent analyses and experiments have challenged the perceived security of these 
emulated, read-only filesystems. Specifically, our research revealed that the assumption of these filesystems being 
read-only is incorrect and can lead to severe security problems. 

Before explaining how it is possible to overwrite the content of files and directories in emulated filesystems, let's 
first understand how these files are managed by the Windows operating system. 

The management of these image files in Windows is handled by the CDFS (CD-ROM File System) driver. CDFS is 
specifically designed to read data from CD/DVD media and present it as a regular filesystem to the operating system 
and applications. When a CD/DVD is inserted, or an ISO image is mounted, the CDFS driver interprets the data on the 
media, translating it into a structure that the Windows filesystem can interact with seamlessly. This driver ensures 
that the data stored in the ISO 9660 format, which is standard for CD-ROMs, is correctly parsed and presented in a 
hierarchical directory structure, like how files and directories are organized in a more conventional filesystem like 
NTFS or FAT32. 

The CDFS driver is responsible for handling various file operations such as reading files, listing directory contents, 
and accessing file attributes. It virtualizes the contents of the CD/DVD, making it appear as a read-only filesystem to 
both the user and applications. This virtualization means that while the underlying data on the physical media is 
immutable, the operating system can interact with it in a “natural” way. The ISO 9660 format supports a limited set 
of attributes in comparison to NTFS.  

In the screenshot below, it can be observed that the "Properties" tab of a file stored on a CD is noticeably less "rich" 
compared to that of a regular file on an NTFS system. This is because the CD-ROM File System (CDFS) used for CDs 
and DVDs does not support the extensive metadata and advanced attributes available in NTFS. As a result, the 
properties information for files on a CD is limited to basic details like file name, type (extension), size, and 
timestamp. Interesting to note that the Attributes of these files are automatically set to R (Read-Only), and there are 
no explicit ACLs on them. More specifically, “Everyone” on the system has read access to them. 

 

26 Archiveddocs, ‘How to Enable Shared ISO Images for Hyper-V Virtual Machines in VMM’. 



DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR 

 

  © 2024 Alessandro Magnosi (@klezVirus)    

 
Figure 40: CD File's Standard Attributes 

File operations against file residing in CD Filesystems are operated by the CDFS driver, which is managed by the IO 
manager. The Windows I/O system is comprised of several executive components that collectively manage hardware 
devices and provide interfaces to these devices for applications and the system itself. This comprehensive system 
includes the I/O manager, Plug and Play (PnP) manager, and power manager. 
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Figure 41: User-mode to Kernel-mode Architecture 

The IO Manager forwards the call from user-mode to the Filter Manager, which dispatches it to the correct 
Filesystem Driver. The Filesystem Filter Manager is a legacy file system filter driver that offers a comprehensive and 
well-documented interface for creating file system filters, simplifying the complex interactions between file system 
drivers and the cache manager. Minifilters register with the filter manager using the FltRegisterFilter API, typically 
specifying an instance setup routine and various operation callbacks. The filter manager calls the instance setup 
routine for each valid volume device managed by a file system, allowing the minifilter to decide whether to attach to 
the volume. 



DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR 

 

  © 2024 Alessandro Magnosi (@klezVirus)    

 

Of course, this means that the call will be dispatched to the CDFS driver if the call is made against a file residing on a 
CD Filesystem. Read/Write operations are handled by the CdCommonRead function. 

 
Figure 42: Callstack from user-mode when reading a file residing on a CD Filesystem 

This function will eventually reach the nt!CcCopyRead to dump the actual content of the file, from here we can check 
the address of the target file object, including its name. If we try to trace the execution from a read operation 
happening on the OS, we’ll see something like the following: 

 
Figure 43: Triggering a file read 
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The function nt!CcCopyRead is called to read the contents of the file on the "CD":

 
Figure 44: Flow CcCopyRead 

The first argument of the CcCopyRead function is a FILE_OBJECT structure, as declared in MS documentation: 

BOOLEAN CcCopyRead( 
  [in]  PFILE_OBJECT     FileObject, 
  [in]  PLARGE_INTEGER   FileOffset, 
  [in]  ULONG            Length, 
  [in]  BOOLEAN          Wait, 
  [out] PVOID            Buffer, 
  [out] PIO_STATUS_BLOCK IoStatus 
); 

We can inspect it in WinDbg using the dt command. The file name can be observed at offset +0x058: 

 
Figure 45: File Object in Memory 
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Interestingly, the filesystem associated with the device object is marked as UDFS.  

 
Figure 46: File's Related Device Object 

Finally, the file content is read from the Cache and sent back to the user. 

 
Figure 47: CcMapAndCopyFromCache 

When the file is mapped into memory, read and write operations are performed directly in memory, completely 
bypassing the driver's functionalities. Because we are using an emulated filesystem, the driver does not reload the 
content from the file itself. It is important to note that this reload would occur if the CD were a physical drive, as the 
content could be fetched directly from the drive. However, in an emulated filesystem, the driver maps the content of 
the UDF system only once. 

 

 
Figure 48: File VAD is marked R/W 

During the flush operation, we can observe that the file's memory is marked as read/write (RW), and the content is 
rewritten to what is usually the cached file stream. Since this is an emulated filesystem with virtualized content, any 
write operation on the Page Table Entry (PTE) where the file is mapped in kernel mode will persist unless the ISO is 
re-mounted. 
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Figure 49: FlushViewOfFile Disassembled in WinDbg 

 
Figure 50: Memory is Flushed Down to MmFlushVirtualMemory 

To evaluate the stability of the mechanism, we developed a fast PowerShell script to monitor for changes and let it 
run for hours after the file was tampered with on disk. In several hours of execution, we didn't identify any 
additional changes being reapplied to the file. 

param( 
    [string]$filePath 
) 
 
function Get-FileHashString { 
    param ( 
        [string]$path 
    ) 
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    $hash = Get-FileHash -Path $path -Algorithm SHA256 
    return $hash.Hash 
} 
 
if (-Not (Test-Path $filePath)) { 
    Write-Host "File does not exist: $filePath" 
    exit 
} 
 
$previousHash = Get-FileHashString -path $filePath 
Write-Host "Monitoring file: $filePath" 
 
while ($true) { 
    Start-Sleep -Seconds 5 
 
    if (-Not (Test-Path $filePath)) { 
        Write-Host "File has been deleted: $filePath" 
        break 
    } 
 
    $currentHash = Get-FileHashString -path $filePath 
 
    if ($currentHash -ne $previousHash) { 
        Write-Host "File has changed: $filePath" 
        $previousHash = $currentHash 
    } 
} 

This process demonstrated that it is indeed possible to alter the contents of files within these supposedly immutable 
filesystems, exposing an important gap in the security model that governs emulated optical supports. 

In a nutshell, the issue opens to a whole new class of vulnerabilities: 

- Stealth PE Backdooring  
- Universal DLL Sideloading Relative to the Emulated Filesystem Volume 
- Universal Software Installation/Update Hijacking 
- Shared Writeable Memory to be used for Malware storage and obfuscation. 

This is even worse as regular antiviruses, even with SYSTEM privileges, cannot remove or quarantine data and files 
from emulated filesystems. 
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ABUSING OPTICAL SUPPORTS TO LOAD MALICIOUS DRIVERS 

The strategies shown below will attempt to load a malicious driver abusing some less-known NTFS tricks that can 
help to avoid the usage of specific Windows Service APIs. The attack has to be considered a natural continuation of 
the previous RO bypass technique, which will be used to swap the content of a driver file on the ISO before loading.  

 

Figure 51: ISO Loading 

Once the ISO is mounted as a filesystem, the attack continues by selecting a specific service driver that can be 
started/stopped (requires admin unless of a misconfiguration) or selecting a service driver that can be started via a 
trigger. Please note that in the image the WudfPf service is being restarted, however, on newer version of Windows, 
this driver is not started by default, so it shows to be a perfect target for this kind of attack. 

 

Figure 52: Start/Restart Service/Trigger Standard Driver Loading 

The process will continue by HIJACKING the driver path. In this paper, we will explore three different mechanisms to 
achieve the goal, with pros, and cons: 

• Direct Reparse Point Abuse 
• DosDevice Global Symlink Abuse 
• Drive Mountpoint Swap 
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DIRECT REPARSE POINT ABUSE – TRUSTED INSTALLER  

This technique, as the name suggests, exploits the possibility for an installer to access directly the 
C:\Windows\System32\drivers folder to perform actions. In this scenario, during the restart of the service driver, it 
is possible to place a malicious symbolic link in the C:\Windows\system32\drivers directory. 

 

The reparse point will not overwrite the driver, but it will become impossible to see it using explorer or the shell. 
Moreover, as the reparse point is processed with “precedence” by the OS, it will get used to find the location of the 
driver image, during the Load Driver process. 

The interesting thing to note is that the Symbolic Link is created with the :qjdedeh stream name in the path, but due 
to the way Win32 paths are handled, the stream name is removed when processing it, effectively overshadowing the 
real file. As such, when the service is restarted, the malicious driver gets loaded instead of the original.  

 

Figure 53: Malicious Driver Loaded 

As the driver was already registered as a service, no calls to CreateService are necessary. Indeed, in the test lab we 
couldn’t collect much telemetry about the service creation, which mimics the behavior shown by Stuxnet, as noted in 
an analysis of Inversecos27. 

 

27 ‘Windows Event Log Evasion via Native APIs’. 
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Normally, services are created using standard Windows API calls such as CreateServiceA, which generate 
corresponding event log entries. However, threat actors can create services by directly interacting with native 
Windows API calls, such as using NdrClientCall2 to start a service after manually creating the necessary registry keys. 
This method starts the service without creating event log entries, thereby evading detection. Stuxnet used this 
technique to register a malicious driver directly via the NtLoadDriver API, which requires registry entries for the 
driver service, effectively removing these artifacts. 

NT SIMLINK ABUSE – NT SYSTEM 

The technique was developed in collaboration with jonasLyk of the Secret Club hacker collective. 

This method involves redirecting the \Device\BootDevice NT symbolic link, which is part of the path from which a 
driver binary is loaded. It leverages NT symbolic links to redirect a driver loading path, enabling the hiding of a 
rootkit within a Windows system. 

 

When the operating system starts a driver service, it begins by interacting with the Service Control Manager (SCM) 
to open and query the service configuration, which includes details such as the driver binary's path and start type. 
The SCM then instructs the system to load the driver into memory using the NtLoadDriver function. This involves 
mapping the driver's executable file into kernel space and resolving any dependencies. The driver's DriverEntry 
routine is called to perform initialization tasks, such as setting up data structures, registering with system 
components, and creating device objects. Finally, the driver is marked as running, making it available for handling 
I/O requests and other system interactions. 

 

As part of this process, the “relative” path System32\drivers\WUDFPF.sys gets converted to the absolute, NT SYSTEM 
relative paths. To avoid mount-point attacks, the path construction uses the \SystemRoot symbolic link to locate the 
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image of the file to load. This makes it immune to techniques like luid-based drive redirection (also known as “object 
overloading”28). 

 

In normal circumstances, this would be enough to prevent the loading of malicious drivers through redirection. 
However, if an attacker can gain SYSTEM privileges, the situation changes. In fact, the \SystemRoot is a global symbolic 
link pointing to \Device\BootDevice.  

 

\Device\BootDevice is by itself a symbolic link pointing to the Device that was used for booting the OS. This usually is 
the same as \BootPartition symbolic link for obvious reasons (i.e. Windows by default split the Hardrive in partitions 
during the initial OS setup).  

 

 

 

28 ‘Object Overloading’. 
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This second layer of indirection enables an attacker with SYSTEM privileges to modify the BootDevice symbolic link, 
allowing SystemRoot to resolve to any desired location. However, as the ACL for the BootDevice just allows getting a 
handle to the object with DELETE access rights, the attacker needs to: 

1. Get system privileges 
2. Backup BootDevice Symlink Target 
3. Tamper BootDevice Symlink Target to Point to Mounted ISO 
4. Start/Restart Service 
5. Restore BootDevice Symlink Target 

 

This technique is similar to the one used by the unDefender29 project, which was implemented to disable the 
WinDefend Driver and service. Microsoft released a patch that prevents TrustedInstaller from disabling the 
Windows Defender service and driver, but never addressed the underlying NT symlink redirection issue. 

NT symbolic links are protected by Access Control Lists (ACLs), but the DELETE privilege allows administrators and 
the NT SYSTEM to delete and recreate them pointing to a different location. 

MOUNT POINT SWAPPING – NT SYSTEM 

This technique is probably widely known, but never used in practice due to potential system instability and aims at 
temporarily changing the drive letter assigned to the BootPartition in order to trick the driver load to access a 
different drive during loading. 

 

29 ‘🇬🇬🇬🇬 The Dying Knight in the Shiny Armour’. 
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It should be clear from what we addressed before that this technique would be completely useless if used in 
isolation, due to the way the final Driver image path is calculated (i.e., using the \SystemRoot symlink). 

However, used in combination with the above NT Symlink Abuse, this technique will allow to completely 
masquerade the path of the driver being loaded, which will appear exactly as the original was loaded instead. 

Contrarily to the previous techniques, where SysMon was pinpointing the actual absolute path of the driver being 
loaded in the system, it could not correctly detect and log this event.  

HIDE UNDER THE TABLECLOTH 

Although this attack is more intriguing when performed on a mounted CDFS system, a similar attack can be executed 
using a non-enumerable path on the primary NTFS filesystem. Such paths are utilized by NTFS for storing 
transactions and additional metadata, typically remaining inaccessible to regular users. 

The path we chose was c:\$Extend\$RmMetadata\$TxfLog\, as it is regularly accessed by the filesystem for transaction 
logging. A user should not be able to access this location as it is not enumerable through the Win32 API. However, we 
discovered that a user could write directories and files in this location if they have SeBackup and SeRestore privileges 
and access the directory with the FILE_OPEN_FOR_BACKUP_INTENT create option and MAXIMUM_ALLOWED desired access. 

 
Figure 54: Required Privileges and Attributes 
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Figure 55: Path Successfully Created 

By doing so, all the attacks demonstrated for the ISO could be replicated using this location. The only advantage, 
however, is that ultimately the driver will be stored on the disk and will be accessible in case its image is swapped 
out. 

 

 

  



DRIVERJACK: TURNING NTFS AND EMULATED READ-ONLY FILESYSTEMS IN AN INFECTION AND PERSISTENCE VECTOR 

 

  © 2024 Alessandro Magnosi (@klezVirus)    

V. ATTACK SCENARIO EXAMPLE 

In this version of the paper, we decided to provide a real attack scenario against one of our OT clients. Of course, for 
privacy purposes, the information regarding the client in question has been replaced or removed, and certain phases 
of the attack were modified and reconstructed in a lab for demonstrating the usability of the techniques explained in 
the reminder of the paper. We decided that using this route would provide the necessary context about how the 
attack could be run successfully and all the steps that should be undertaken in the process.  

The client network consisted of both an IT network and an OT network. The IT network is a standard hybrid Active 
Directory (AD) and Azure AD setup, which is connected to the OT network but segregated by a firewall. The OT 
network comprised engineering workstations, Human-Machine Interfaces (HMI), SCADA controllers, a print server, 
and various IoT devices and cameras. This OT network is connected via Serial Direct Radio (SDR) to the PLC stations. 

To ensure that engineering workstations and equipment were kept up to date, the client had established a secure, 
one-way pipeline which only task was maintaining an offline storage of hot-patches, portable software, and software 
updates for the OT network. For demonstration purposes, we would say that this software was only maintained 
using ISOs. These ISOs were accessed and downloaded by an update server, which then distributed them to the 
workstations. 

 

Figure 56: Simplified Network Architecture 
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The primary objective of this scenario was reaching out Engineering Workstation in the segregated OT Network.  

INITIAL BREACH 

The initial attack was executed through phishing. To maximize the probability of success, we targeted open redirects 
or XSS vulnerabilities on the siemens.com domain. After a few hours of searching, we discovered an XSS vulnerability 
on a Siemens subdomain. The attack vector was: 

https://training.plm.automation.siemens.com/index.cfm?show=%27)%2B<JS-CODE-HERE>%2B%27 

 
Figure 57: XSS Weaponized for Phishing (the sha256 is the hash of the string “Hello DEFCON 32 from Klez”) 

Leveraging the XSS vulnerability on Siemens, we were able to redirect users to a specific phishing site or employ 
HTML smuggling to download a payload directly onto the victim's machine. The attack progressed using both 
strategies. The primary domains utilized for the attack were siemens-plc.net and siemens-training.com, due to their 
association with the affected subdomain. 

 
Figure 58: Phishing Campaign 
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The credential stealing route led to the compromise of a user with the permission of altering data in the 
UpdateServiceCatalogEw pipeline, which granted us the ability to modify the content of the ISOs generated. We 
proceeded by tampering with one of the software utilized in the OT infrastructure: the Siemens Step7 ISO. This ISO is 
subtly altered to include malicious components: an encrypted, vulnerable driver and a custom user-mode DLL. The 
tampered ISO is crafted to trigger these components during the software's installation process. 

As many installation packages, the Step7 software contains multiple DLL hijacking opportunities, that could be easily 
identified downloading one of the generated ISO and trying an installation: 

 
Figure 59: DLL hijacking opportunities identified with Procmon 

The necessary ISO was modified as follows: 
- Created a directory Windows/System32/Drivers: 

o Added valid Windows drivers (e.g., WudfPf.sys), 
o Incorporated legitimate, signed Siemens drivers, 

- Added files in InstData: 
o Hijacked a DLL to initiate the execution of the malicious payload, 
o Added a copy of the rs.exe file, renamed as ru.exe, in the InstData directory. 

 
Figure 60: File differences between legitimate and tampered ISO 

As this product needs to be installed as an Administrator, we don’t need to worry about elevating privileges. 

INFECTION MECHANISM 
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After the setup process begins, the planted DLL is executed. The Step7 setup is configured in a way that execution of 
the DLL does not depend on the successful completion of the installation. This ensures that even if the installation is 
interrupted, the malware still gains a foothold in the system. 

The planted DLL is implemented such that it will re-write the file ru.exe and execute it as a detached process. This 
flow was designed to prevent malware dying as soon as the setup procedure is stopped and to avoid process 
injection, as in this case it would appear to be more suspicious than a new process, especially considering that the 
setup file will spawn several child processes. 

 
Figure 61: Malware Phase 1 

The file ru.exe operates using the technique referred to as RpcExec, discussed previously in this document.  

DRIVER LOADING 

In the second phase, the malware will proceed with the setup and start of a driver using the technique we named 
DriverJack. The driver covers an important part as it allows the malware to disable Driver Signature Enforcement 
(DSE), enabling the loading of a more comprehensive, unsigned malicious driver. This is then used to disable PPL 
protection, uncover data from LSASS, disable EtwTi and install multiple layers of persistence. 

At this stage, the driver will have to bypass DSE, HVCI, Driver Blocklist and so on. For this reason, we had to hunt for 
vulnerable drivers, following the vulnerable patterns that we discussed before. Once loaded, the  

In our limited research time, we found 4 vulnerable drivers, leading to two arbitrary virtual memory r/w and two 2 
arbitrary physical memory allocations CVE-2024-26507 and CVE-2024-34332. This research held no real value in 
the context of the paper, but outlined how specific vulnerable patterns are still present even in Windows Kernel 
WHQL drivers. 
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Figure 62: Malware Phase 2  

PERSISTENCE AND PROPAGATION 

Once the initial infection is established, the tampered ISO's role concludes. The malware is designed to operate using 
standard, legitimate copies of the Siemens Step7 ISO. It exploits the read-only bypass vulnerability to tamper with 
these ISOs when they are mounted in the system. This capability allows the malware to self-propagate and reinfect 
systems without needing the original tampered ISO. 

If the malware detects an environment where Siemens Step7 is installed, or if it finds any ISO at all on the system, or 
any other mounted CDFS, it proceeds to mount the ISO and/or directly tamper with its contents. It then triggers a 
reinstallation or repair process. Regardless of whether the installation continues or is terminated by the user, the 
execution of the planted DLL occurs, ensuring the malware's continued operation. 
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VI. FINAL REMARKS 

We conducted an in-depth analysis of a Stuxnet-like attack in the current context to examine how advanced malware 
of this nature might perform against modern security measures. Although security technology has made tremendous 
progress in strengthening defenses, we clearly identified that they are far from being immune to attacks. 

Moreover, the identification of the Read-Only bypass in emulated filesystems demonstrates that there are still new 
and exploitable methods of attack even in areas that are assumed secure by default. This specific vulnerability 
highlights an important lesson: locations that are commonly seen as secure can yet include substantial flaws. 

The range of potential threats, particularly in the domain of critical infrastructure, is extensive and diverse. Our 
investigation of kernel drivers and BYOVD approaches is just the start of a wide range of vulnerabilities that 
attackers can exploit to compromise an infrastructure. 

The main finding of our research is evident: the need to consistently investigate and evaluate all aspects of our digital 
and physical surroundings. Every single element, regardless of its perceived level of security, has the potential to be 
susceptible to attack. 
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APPENDIX A 

TEST CONFIGURATION 

DriverJack was tested using the following configurations: 

Windows Version Overwrite 
Technique 

SecureBoot 
Enabled 

BlockList 
Enabled 

HVCI 
Enabled 

Result 

Windows 10 
19H1 

XOR No Yes No Success 

Windows 10 
19H1 

REPLACE No Yes No Success 

Windows 10 
20H1 

XOR No Yes No Success 

Windows 10 
20H1 

REPLACE No Yes No Success 

Windows 11 
22H2 

XOR No Yes No Success 

Windows 11 
22H2 

REPLACE No Yes No Failure 

Windows 11 
24H2 

XOR Yes Yes Yes Success 

Windows 11 
24H2 

REPLACE Yes Yes Yes Failure 

The tests showed a limitation in the way DriverJack can replace files on CDFS filesystems from Windows 11. 
Specifically, we noticed that to successfully overwrite the content of an executable file and execute it, the 
replacement file must be of the exact same size as the file being replaced.  

This limitation affects the driver file on all versions of Windows, as it is signed and does not accept any form of 
padding. However, on Windows 10 (19H1/20H1), the executable file and DLL used to launch KDU do not present this 
requirement. We found that to successfully replace an executable file (PE) on Windows 11, one must select a file 
around the same size as the one being replaced.  

The margin of tolerance for the overwrite, without causing system issues or overflows, is the size of the file on disk, 
which is aligned with the size of the block on the disk filesystem. The margin for a successful and functional 
overwrite falls within a small range defined by the PE section and the zero-padding used for section-page alignment. 
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Figure 63: Tolerance for File Replacement Size 
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