
1/9

YARP as a C2 Redirector
rastamouse.me/yarp-as-a-c2-redirector/

Blog / March 9, 2024 / Rasta Mouse

YARP: Yet Another Reverse Proxy is a .NET library developed by Microsoft designed to run
on top of ASP.NET Core infrastructure. The intended use case for YARP is to sit between
backend and frontend services to provide reverse proxy and load balancing services. The
content of this blog post is to show how it can also be used as a C2 redirector. One question
I’m sure you’re asking is why YARP over something like Apache or Nginx, to which I don’t
really have an answer. The only reason that jumps out to me is that ASP.NET Core is more
readily deployable to serverless cloud services like AWS Lambda and Azure Functions.
Architecturally, this makes it easy to host C2 server’s on-prem and proxy traffic through a
site-to-site VPN, particularly if deploying via IaC. Beyond that, I just wanted to try it out for
funsies.

Create a new empty ASP.NET Core project and add a project reference for the
Yarp.ReverseProxy NuGet package. Then add the YARP middleware:

Program.cs

var builder = WebApplication.CreateBuilder(args);
builder.Services
 .AddReverseProxy()
 .LoadFromConfig(builder.Configuration.GetSection("YARP"));

var app = builder.Build();
app.MapReverseProxy();
app.Run();

Line 4 yells YARP to load its configuration from appsettings.json, which is idiomatic for
ASP.NET Core. You can also configure YARP in code, but this method provides more
flexibility for deployment. This is therefore literally all the C# that we need to write. Add a new
section called “YARP” to appsettings.json. Note that the section name must match what
you put in the call to GetSection() above.

https://rastamouse.me/yarp-as-a-c2-redirector/
https://rastamouse.me/category/blog/
https://github.com/microsoft/reverse-proxy

2/9

appsettings.json

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning"
 }
 },
 "Urls": "http://0.0.0.0:80", <-- bind YARP to port 80
 "AllowedHosts": "*",
 "YARP": {
 -- YARP config here --
 }
}

As a way to get started and demonstrate YARP at a high level, let’s just proxy every request
through to the C2 server. The bulk of the configuration is to define “routes” and “clusters”. A
“route” is a means of matching an incoming HTTP request based on its path, method, host,
headers or query parameters. YARP will not proxy a request unless it matches a defined
route. A “cluster” defines the destination(s) of where the matching HTTP requests should be
proxied to.

Here, I have an example HTTP C2 listener setup to Beacon to www.nickelviper.com and
api.nickelviper.com. Both of which resolve to 35.176.76.62 – the public IP of the YARP
instance.

3/9

A basic YARP configuration could look like this:

4/9

"YARP": {
 "Routes": {
 "yolo": {
 "ClusterId": "teamserver",
 "Match": {
 "Path": "{**catch-all}",
 "Hosts": [
 "api.nickelviper.com",
 "www.nickelviper.com"
]
 }
 }
 },
 "Clusters": {
 "teamserver": {
 "Destinations": {
 "http-yarp": {
 "Address": "http://172.31.3.178"
 }
 }
 }
 }
}

This tells YARP that any HTTP request containing api.nickelviper.com or
www.nickelviper.com in the Host header should be proxied to http://172.31.3.178. This
is the internal IP address of the C2 server as reachable by the YARP instance. The default
ASP.NET Core logging will print HTTP requests to the console, but you can also use other
logging solutions (e.g. Serilog) and send them somewhere more useful such as RedELK.

info: Yarp.ReverseProxy.Forwarder.HttpForwarder[9]
 Proxying to http://172.31.3.178/cx HTTP/2 RequestVersionOrLower
info: Yarp.ReverseProxy.Forwarder.HttpForwarder[56]
 Received HTTP/1.1 response 200.

The Beacon will check-in and behave as normal.

https://github.com/outflanknl/RedELK

5/9

To prevent any arbitrary HTTP request making it through, the route policies can be tightened
to more closely match what’s expected based on the C2 traffic profile. The profile running in
this example performs check-in’s using GET requests to /cx and /push; with the Beacon
metadata transmitted in the Cookie header. It sends data back using POST requests to
/submit.php?id=<bid>. The User-Agent header is Mozilla/5.0 (compatible; MSIE 9.0;
Windows NT 6.1; Trident/5.0; Xbox) for both.

The two routes for the GETs can look like this:

6/9

"checkin-1": {
 "ClusterId": "teamserver",
 "Match": {
 "Methods": [
 "GET"
],
 "Path": "/cx",
 "Hosts": [
 "api.nickelviper.com",
 "www.nickelviper.com"
],
 "Headers": [
 {
 "Name": "User-Agent",
 "Values": [
 "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0; Xbox)"
]
 },
 {
 "Name": "Cookie",
 "Values": [],
 "Mode": "Exists"
 }
]
 }
},
"checkin-2": {
 "ClusterId": "teamserver",
 "Match": {
 "Methods": [
 "GET"
],
 "Path": "/push",
 "Hosts": [
 "api.nickelviper.com",
 "www.nickelviper.com"
],
 "Headers": [
 {
 "Name": "User-Agent",
 "Values": [
 "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0; Xbox)"
]
 },
 {
 "Name": "Cookie",
 "Values": [],
 "Mode": "Exists"
 }
]
 }
}

7/9

We won’t know the value of the metadata cookie because it will be different for each Beacon,
so I’m just checking that it exists. Other modes include “HeaderPrefix” and “Contains”, which
can help match more specific cases (e.g. if the C2 profile includes a static prefix and/or suffix
that we can look for). If a mode is not specified (as with the User-Agent header), it defaults to
“Exact”.

The route for the POST can look like this:

"post-data": {
 "ClusterId": "teamserver",
 "Match": {
 "Methods": [
 "POST"
],
 "Path": "/submit.php",
 "Hosts": [
 "api.nickelviper.com",
 "www.nickelviper.com"
],
 "Headers": [
 {
 "Name": "User-Agent",
 "Values": [
 "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0; Xbox)"
]
 }
],
 "QueryParameters": [
 {
 "Name": "id",
 "Values": [],
 "Mode": "Exists"
 }
]
 }
}

As with the metadata cookie, we won’t know the exact value of the Beacon ID, so we just
check that the query parameter exists. This also supports “Prefix” and “Contains” modes.

Trying to hit the endpoints in a way that doesn’t match a configured route will return a 404 –
but this is served from YARP and not the C2 server. Additional “catch-all” rules can be added
to proxy unknown requests for deception and/or trolling purposes. In the very first example, I
showed a catch all that proxied to the team server. You could add additional clusters that
point to legitimate websites:

8/9

"Clusters": {
 "teamserver": {...},
 "google": {
 "Destinations": {
 "google": {
 "Address": "https://www.google.com"
 }
 }
 }
}

And then a new catch all rule:

"catch-all": {
 "ClusterId": "google",
 "Match": {
 "Path": "{**catch-all}"
 }
}

But clearly, the best thing to do is re-write the URL in order to Rick Roll nosey people. This
can be done using YARP’s “transforms”.

"rick-roll": {
 "ClusterId": "youtube",
 "Match": {
 "Path": "{**catch-all}"
 },
 "Transforms": [
 {
 "PathSet": "/watch"
 },
 {
 "QueryValueParameter": "v",
 "Set": "dQw4w9WgXcQ"
 }
]
}

9/9

My experience with YARP was quite pleasant although I expect most will prefer to stick with
their Apache/Nginx rewrite rules. This package may have more utility if built into .NET-based
C2’s directly.

