

 Custom keyboard layout persistence, by satokon and Jonas Lykk

Hello everybody, in this paper we will be presenting how it is possible to achieve

persistence through a malicious custom keyboard layout driver.

Before proceeding any further, I must specially thank Jonas Lykk and Matti for their

help. This would have not been possible without them, since they have helped me

with the code fixing, and the idea itself came from Jonas after discussing new

persistence techniques. Both are really smart people and I encourage you to follow

them if you aren't already, you won’t regret it.

This has been built with the sample US keyboard layout in

https://github.com/microsoft/Windows-driver-samples/tree/master/input/layout, and

additionally tested out in Windows 11 version 21h2 and Windows 10 version 21h1.

Warning: I recommend running the binary once compiled in a VM, since I haven't

implemented a way to uninstall the custom layout in the PoC. This can be easily

done by deleting all the related registry subkeys which are highlighted in the

explanation below. (See last section of this document for more, before Appendix).

https://twitter.com/jonasLyk
https://github.com/Mattiwatti
https://github.com/microsoft/Windows-driver-samples/tree/master/input/layout

The main problem: how can we successfully get execution using

our custom keyboard layout, after login, without any corruption?

To answer this question, we need to explain how things work at some basic level.

In essence, keyboard layout drivers should only contain conversion tables in charge of

transforming “scancode to virtual key code” and “virtual key code to character “,

using arrays and structs for the implementation.

Additionally, it should only have exports that will be called as necessary, to work out with

these conversion tables.

Exports can vary depending on the requirements of the language, for example, the default

KBDUS.DLL only has one export: KbdLayerDescriptor, meanwhile KBDJPN.DLL, has

KbdNlsLayerDescriptor, KbdLayerRealDllFileNT4, KbdLayerRealDllFile, and

KbdLayerMultiDescriptor.

I recommend looking at:

https://github.com/microsoft/Windows-driver-samples/tree/master/input/layout and

http://kbdlayout.info/ which gives an in-depth explanation of the different parts of how

keyboard layouts are managed in Windows.

For our intentions, we only care where the main information is stored to avoid any type of

possible corruption while loading our custom layout, which is mainly done in kernel mode.

In this sense, the conversion tables are stored in the .data section of the PE in all cases,

which can be seen in the sample’s code and in the default layouts in the System32 directory.

One example that confirms the fact on how layouts are manipulated in kernel is

NtUserLoadKeyboardLayoutEx (win32kbase.sys)

Here, there is a clear check for the .data section inside the function

LoadKeyboardLayoutFile, specifically in ReadLayoutFile, where our handle to the layout DLL

file will be used to load it and obtain a pointer to IMAGE_SECTION_HEADER for later

processing.

https://github.com/microsoft/Windows-driver-samples/tree/master/input/layout
http://kbdlayout.info/

Having these ideas in mind, creating our malicious keyboard driver will probably require the

same conversion tables as your target keyboard layout.

However, since our payload will be probably storing hardcoded strings to create a process

as a proof of execution, we need to store all of them in a different way than using .data

section, which is the default section used for compile-time string storage.

Two simple solutions I came across were either stack strings or generating an entire new

section inside the keyboard driver, where I decided for this demonstration to use an entire

new section.

After having an idea on how to approach things, it was necessary to consider how a custom

keyboard layout can be installed as fast as possible for our purposes.

In this regard, one of the concepts involved in this process is keyboard layout identifiers or

KLID for short, which is an 8-digit number (DWORD), where the LOWORD is the language

ID (or LANGID) and the HIWORD is the sublanguage ID for a specific keyboard layout.

For this reason, we will have to write our own KLID as a subkey in

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Keyboard Layouts,

where the DACL specifies only READ access for unprivileged users.

In this PoC, the code will get the last KLID that exists in the subkeys and add a random

number which summed up with the LOWORD part of this KLID is less than 0xFFFF, since

the language ID is 2 bytes, and I didn’t wanted to overflow. I decided to use 0xC as a test,

and it works fine, and changing it having in mind this constraint shouldn’t cause any problem.

Once our custom KLID subkey has been created, it is necessary to create REG_SZ values.

The bare minimum specific values that need to be created are “Layout Text, Layout

Display Name” and most importantly, “Layout File”.

For our purposes, the most important value inside our language identifier subkey is

“Layout file”, because it will store our keyboard driver dll. It is important to remember that

this DLL must be in the System32 directory to be manipulated in kernel mode.

You probably also noticed I additionally added Layout ID as a subkey in the PoC.

This is to make it blend with the last KLID subkey values in this “Keyboard Layouts” key in

my Windows 11 VM, although it really doesn’t have any practical purpose for this specific

usage, since it’s mostly related to device-specific variations to the same keyboard layout.

Once finished writing to the newly created language identifier subkey, its necessary to make

the current user load it. There are two ways to do it that I’ve found so far: adding an entry

with the value name + 1 to HKEY_CURRENT_USER\Keyboard Layout\Preload with our

language identifier or calling InstallLayoutOrTip with the format that's shown in MSDN:

https://docs.microsoft.com/en-us/windows/win32/tsf/installlayoutortip

For example, for the screenshot shown above, if you wanted to load your layout by writing to

the Preload subkey, you will have to create a REG_SZ value with 3 as the name, and your

KLID as data, like “00000cbc”.

On the other hand, if you choose InstallLayoutOrTip method, you will have to use your KLID

for the format string specified in the documentation.

What I’ve found to work has been simply using “%04x: %08x” as format string with the KLID

of the custom layout as first argument, and NULL as second parameter for installation.

So far, we have a brief idea of how keyboard layouts are structured and how to install a

custom one for our malicious purposes, but how can we get execution if keyboard layouts

are only intended to have data and exports defined?

https://docs.microsoft.com/en-us/windows/win32/tsf/installlayoutortip

 The solution: achieving execution with Winlogon!

After looking at Procmon in Windows 11 and finding interesting results, this is what I found

after staring at IDA for some time.

At some point in the boot process, Winlogon will call UpdatePerUserSystemParameters, as

it can be seen in the screenshot below.

Inside this function, LoadPreloadKeyboardLayouts will be called, which will basically get all

KLIDs from HKCU\Keyboard Layout\Preload, using initialization file mapping.

Here, our custom keyboard layout identifier is also in, whether we use one of the two

installation methods mentioned before.

Following the execution flow, inside LoadPreloadKeyboardLayouts the function

LoadKeyboardLayoutWorker is called, which will eventually pass our malicious keyboard

layout ID as an argument. From this function, OpenKeyboardLayoutFileWorker is called,

where an apparently innocent LoadLibraryExW is executed, used for a simple handle check.

This is the start of the end, since LoadLibraryExW will internally call LdrLoadDll, which will

eventually call LdrpCallInitRoutine, redirecting execution to the entrypoint established in the

PE’s Optional Header.

 |

At this point, leveraging this LoadLibraryExW is easy, we just needed to define an entrypoint

function and set it in the linker options for the keyboard layout sample driver used.

What I did inside my entrypoint function is call a simple CreateProcess for cmd.exe, which

was more than enough to make winlogon show a shell as System every single time the

machine is rebooted after the user which has the keyboard custom layout installed, has

logged in.

But there was one main issue: When I changed between keyboard layout to my custom

layout, it spawned a shell everytime as unprivileged user, which was a little bit problematic.

The reason is because the internal function LoadKeyboardLayoutWorker is called by APIs

such as LoadKeyboardLayoutA, which can also trigger the execution of our malicious

entrypoint function inside the custom keyboard driver.

What I decided to do was to check for “winlogon.exe” module before executing our payload.

This way we can only ensure the system shell after user login for now, or when winlogon

loads the keyboard layout again, which can also become a problem.

For this reason, I created a global mutex with NtCreateMutant that will prevent multiple

instances of cmd.exe once it’s loaded at least once. This solved every issue related to

multiple execution.

Limitations so far:

Once reached this point, I think it is worth the time to clearly mention the limitations of this

persistence method:

1.-It requires administrator privileges to be done.

2.-The range of keyboard layout samples in the Microsoft repository is limited, see the next

page for a possible solution.

3.-Probably easily detected by AV minifilters.

4. The methods for installation explained above mainly target a specific user, but there is

probably a way to do it for all users.

Another important question: Since there are limited official keyboard layout

driver’s sources from Microsoft samples, can we even generate our own

keyboard layout sources?

The answer to this question is simple, and it is Microsoft Keyboard Layout Creator

(MSKLC). This is a must to anyone that will be messing around this topic, for

example, I reverse engineered the exports of KbdMsi.dll to understand how I can

install my custom layout driver.

Inside the binaries of MSKLC, we are only interested in kbdutool.exe.

This tool will generate the source code for our keyboard driver, from a .klc extension

file. But how can we get the .klc file in the first place?

Two ways, you can either: use kbdlayout.info for the specific language that you are

messing around or inside MSKLC you can use the following options:

FILE-> Load Existing Keyboard and pick your target language -> Save Source File

as:

This method will query some registry values in your computer for the virtual keys, so

it’s more reliable that the first method, but the final decision it’s up to you.

After storing the klc file, use the following command line:

“kbdutool.exe -u -i -s <your klc file path>”

if -u parameter doesn’t work, try with -a.

This will generate a .c file, a .h file, a .def file and a .rc file, very similar to the ones

found in the Microsoft samples, so it’s just a matter of making a proper Visual Studio

solution and compiling it.

Maybe you could even reverse which part of the binary deals with “Load Existing

Keyboard” option and find a way to automate the process for all the languages.

http://kbdlayout.info/

How to uninstall the custom keyboard layout:

Maybe you are messing around the layouts already, but you are not sure how to uninstall it

after using any of the methods I showed above.

This is easy:

1.Inside HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Keyboard Layouts,

delete your KLID subkey for your custom layout.

2. Go to HKEY_CURRENT_USER\Keyboard Layout\Preload, delete the entry value that

contains your custom layout KLID

If used InstallLayoutOrTip as method, then you should also check for

HKEY_CURRENT_USER\Keyboard Layout\Substitutes.

Here look for the value that contains your custom layout KLID and delete it.

3.Delete the custom layout driver in system32 folder.

4.Reboot.

Final thoughts and future ideas:

This method is obviously not the best for persistence, but it was mostly one of the challenges

Jonas asked if it was possible, and it totally is.

Maybe you, the reader, could also be interested in replacing one specific default keyboard

layout, for which I could totally encourage you to do it.

If you do mess around this, be aware: default layouts are signed with Authenticode.

A really bad C/C++ PoC for both the payload and the installer has been uploaded to

the main repository.

Appendix:

1. LoadKeyboardLayoutA function:

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-

loadkeyboardlayouta

2. InstallLayoutOrTip function:

https://docs.microsoft.com/en-us/windows/win32/tsf/installlayoutortip

3. Language Identifiers: https://docs.microsoft.com/en-us/windows/win32/intl/language-

identifiers

4. Literally everything you need to know in terms of terminology:

http://kbdlayout.info/terminology

5. Everything related to different layouts for different languages:

http://kbdlayout.info/features/languages

6. Source code for Microsoft keyboard layout samples:

https://github.com/microsoft/Windows-driver-samples/tree/master/input/layout

7. https://levicki.net/articles/2006/09/29/HOWTO_Build_keyboard_layouts_for_Windows

_x64.php

8. Microsoft tool link: https://www.microsoft.com/en-

us/download/details.aspx?id=102134

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-loadkeyboardlayouta
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-loadkeyboardlayouta
https://docs.microsoft.com/en-us/windows/win32/tsf/installlayoutortip
https://docs.microsoft.com/en-us/windows/win32/intl/language-identifiers
https://docs.microsoft.com/en-us/windows/win32/intl/language-identifiers
http://kbdlayout.info/terminology
http://kbdlayout.info/features/languages
https://github.com/microsoft/Windows-driver-samples/tree/master/input/layout
https://levicki.net/articles/2006/09/29/HOWTO_Build_keyboard_layouts_for_Windows_x64.php
https://levicki.net/articles/2006/09/29/HOWTO_Build_keyboard_layouts_for_Windows_x64.php
https://www.microsoft.com/en-us/download/details.aspx?id=102134
https://www.microsoft.com/en-us/download/details.aspx?id=102134

