
1/13

Bryan Alexander

Abusing Delay Load DLLs for Remote Code Injection
dronesec.pw/blog/2017/09/19/abusing-delay-load-dll

Sep 19th, 2017

I always tell myself that I’ll try posting more frequently on my blog, and yet
here I am, two

years later. Perhaps this post will provide the necessary
motiviation to conduct more public

research. I do love it.

This post details a novel remote code injection technique I discovered while
playing around

with delay loading DLLs. It allows for the injection of
arbitrary code into arbitrary remote,

running processes, provided that they
implement the abused functionality. To make it

abundantly clear, this is not
an exploit, it’s simply another strategy for migrating into other

processes.

Modern code injection techniques typically rely on a variation of two different
win32 API

calls: CreateRemoteThread and NtQueueApc. Endgame recently put out a
great article[0]

detailing ten various methods of process injection. While not
all of them allow for injection

into remote processes, particularly those
already running, it does detail the most common,

public variations. This
strategy is more akin to inline hooking, though we’re not touching the

IAT
and we don’t require our code to already be in the process. There are no calls
to

NtQueueApc or CreateRemoteThread, and no need for thread or process
suspension. There

are some limitations, as with anything, which I’ll detail
below.

Delay Load DLL

Delay loading is a linker strategy that allows for the lazy loading of DLLs.
Executables

commonly load all necessary dynamically linked libraries at runtime
and perform the IAT fix-

ups then. Delay loading, however, allows for
these libraries to be lazy loaded at call time,

supported by a pseudo IAT
that’s fixed-up on first call. This process can be better illuminated

by the
following, decades old figure below:

http://dronesec.pw/blog/2017/09/19/abusing-delay-load-dll/

2/13

This image comes from a great Microsoft article released in 1998 [1] that
describes the

strategy quite well, but I’ll attempt to distill it here.

Portable executables contain a data directory named

IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT , which you can see using dumpbin /imports
or

using windbg. The structure of this entry is described in delayhlp.cpp,
included with the

WinSDK:

struct InternalImgDelayDescr {

 DWORD grAttrs; // attributes

 LPCSTR szName; // pointer to dll name

 HMODULE * phmod; // address of module handle

 PImgThunkData pIAT; // address of the IAT

 PCImgThunkData pINT; // address of the INT

 PCImgThunkData pBoundIAT; // address of the optional bound IAT

 PCImgThunkData pUnloadIAT; // address of optional copy of original IAT

 DWORD dwTimeStamp; // 0 if not bound,

 // O.W. date/time stamp of DLL bound to (Old
BIND)

 };

The table itself contains RVAs, not pointers. We can find the delay directory
offset by parsing

the file header:

3/13

0:022> lm m explorer

start end module name

00690000 00969000 explorer (pdb symbols)

0:022> !dh 00690000 -f

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

[...]

 68A80 [40] address [size] of Load Configuration
Directory

 0 [0] address [size] of Bound Import Directory

 1000 [D98] address [size] of Import Address Table
Directory

 AC670 [140] address [size] of Delay Import Directory

 0 [0] address [size] of COR20 Header Directory

 0 [0] address [size] of Reserved Directory

The first entry and it’s delay linked DLL can be seen in the following:

0:022> dd 00690000+ac670 l8

0073c670 00000001 000ac7b0 000b24d8
000b1000

0073c680 000ac8cc 00000000 00000000
00000000

0:022> da 00690000+000ac7b0

0073c7b0 "WINMM.dll"

4/13

This means that WINMM is dynamically linked to explorer.exe, but delay loaded,
and will

not be loaded into the process until the imported function is invoked.
Once loaded, a helper

function fixes up the psuedo IAT by using GetProcAddress
to locate the desired function and

patching the table at runtime.

The pseudo IAT referenced is separate from the standard PE IAT; this IAT
is specifically for

the delay load functions, and is referenced from the delay
descriptor. So for example, in

WINMM.dll’s case, the pseudo IAT for WINMM is
at RVA 000b1000. The second delay

descriptor entry would have a separate RVA
for its pseudo IAT, and so on and so forth.

Using WINMM as our delay example, explorer imports one function from it, PlaySoundW .

In my particular running instance, it has not been invoked, so the pseudo IAT
has not been

fixed up yet. We can see this by dumping it’s pseudo IAT entry:

0:022> dps 00690000+000b1000 l2

00741000 006dd0ac
explorer!_imp_load__PlaySoundW

00741004 00000000

Each DLL entry is null terminated. The above pointer shows us that the existing
entry is

merely a springboard thunk within the Explorer process. This takes
us here:

0:022> u explorer!_imp_load__PlaySoundW

explorer!_imp_load__PlaySoundW:

006dd0ac b800107400 mov eax,offset explorer!_imp__PlaySoundW (00741000)
006dd0b1 eb00 jmp explorer!_tailMerge_WINMM_dll (006dd0b3)

explorer!_tailMerge_WINMM_dll:

006dd0b3 51 push ecx

006dd0b4 52 push edx

006dd0b5 50 push eax

006dd0b6 6870c67300 push offset
explorer!_DELAY_IMPORT_DESCRIPTOR_WINMM_dll (0073c670)

006dd0bb e8296cfdff call explorer!__delayLoadHelper2 (006b3ce9)

5/13

The tailMerge function is a linker-generated stub that’s compiled in per-DLL,
not per

function. The __delayLoadHelper2 function is the magic that
handles the loading and

patching of the pseudo IAT. Documented in delayhlp.cpp,
this function handles calling

LoadLibrary/GetProcAddress and patching the
pseudo IAT. As a demonstration of how this

looks, I compiled a binary that
delay links dnslib. Here’s the process of resolution of

DnsAcquireContextHandle:

0:000> dps 00060000+0001839c l2

0007839c 000618bd
DelayTest!_imp_load_DnsAcquireContextHandle_W

000783a0 00000000

0:000> bp DelayTest!__delayLoadHelper2

0:000> g

ModLoad: 753e0000 7542c000
C:\Windows\system32\apphelp.dll

Breakpoint 0 hit

[...]

0:000> dd esp+4 l1

0024f9f4 00075ffc

0:000> dd 00075ffc l4

00075ffc 00000001 00010fb0 000183c8 0001839c

0:000> da 00060000+00010fb0

00070fb0 "DNSAPI.dll"

0:000> pt

0:000> dps 00060000+0001839c l2

0007839c 74dfd0fc DNSAPI!DnsAcquireContextHandle_W

000783a0 00000000

6/13

Now the pseudo IAT entry has been patched up and the correct function is
invoked on

subsequent calls. This has the additional side effect of leaving
the pseudo IAT as both

executable and writable:

0:011> !vprot 00060000+0001839c

BaseAddress: 00371000

AllocationBase: 00060000

AllocationProtect: 00000080
PAGE_EXECUTE_WRITECOPY

At this point, the DLL has been loaded into the process and the pseudo IAT
patched up. In

another additional twist, not all functions are resolved on
load, only the one that is invoked.

This leaves certain entries in the
pseudo IAT in a mixed state:

00741044 00726afa
explorer!_imp_load__UnInitProcessPriv

00741048 7467f845 DUI70!InitThread

0074104c 00726b0f explorer!_imp_load__UnInitThread

00741050 74670728 DUI70!InitProcessPriv

0:022> lm m DUI70

start end module name

74630000 746e2000 DUI70 (pdb symbols)

In the above, two of the four functions are resolved and the DUI70.dll library
is loaded into

the process. In each entry of the delay load descriptor, the
structure referenced above

maintains an RVA to the HMODULE. If the module
isn’t loaded, it will be null. So when a

delayed function is invoked that’s
already loaded, the delay helper function will check it’s

entry to determine if
a handle to it can be used:

7/13

HMODULE hmod = *idd.phmod;

 if (hmod == 0) {

 if (__pfnDliNotifyHook2) {

 hmod = HMODULE(((*__pfnDliNotifyHook2)(dliNotePreLoadLibrary,
&dli)));

 }

 if (hmod == 0) {

 hmod = ::LoadLibraryEx(dli.szDll, NULL, 0);

 }

The idd structure is just an instance of the InternalImgDelayDescr described
above and

passed into the __delayLoadHelper2 function from the linker
tailMerge stub. So if the

module is already loaded, as referenced from delay
entry, then it uses that handle instead. It

does NOT attempt to LoadLibrary
irregardless of this value; this can be used to our

advantage.

Another note here is that the delay loader supports notification hooks. There
are six states we

can hook into: processing start, pre load library, fail
load library, pre GetProcAddress, fail

GetProcAddress, and end processing. You
can see how the hooks are used in the above code

sample.

Finally, in addition to delay loading, the portable executable also supports
delay library

unloading. It works pretty much how you’d expect it, so we
won’t be touching on it here.

Limitations

Before detailing how we might abuse this (though it should be fairly obvious),
it’s important

to note the limitations of this technique. It is not completely
portable, and using pure delay

load functionality it cannot be made to be so.

The glaring limitation is that the technique requires the remote process to be
delay linked. A

brief crawl of some local processes on my host shows many
Microsoft applications are: dwm,

explorer, cmd. Many non-Microsoft
applications are as well, including Chrome. It is

additionally a well
supported function of the portable executable, and exists today on modern

systems.

Another limitation is that, because at it’s core it relies on LoadLibrary,
there must exist a DLL

on disk. There is no way to LoadLibrary from memory
(unless you use one of the countless

techniques to do that, but none of which
use LoadLibrary…).

8/13

In addition to implementing the delay load, the remote process must implement
functionality

that can be triggered. Instead of doing a CreateRemoteThread,
SendNotifyMessage, or

ResumeThread, we rely on the fetch to the pseudo IAT, and
thus we must be able to trigger

the remote process into performing this
action/executing this function. This is generally

pretty easy if you’re using
the suspended process/new process strategy, but may not be trivial

on running
applications.

Finally, any process that does not allow unsigned libraries to be loaded will
block this

technique. This is controlled by ProcessSignaturePolicy and can be
set with

SetProcessMitigationPolicy[2]; it is unclear how many apps are using
this at the moment, but

Microsoft Edge was one of the first big products to be
employing this policy. This technique is

also impacted by the
ProcessImageLoadPolicy policy, which can be set to restrict loading of

images
from a UNC share.

Abuse

When discussing an ability to inject code into a process, there are three
separate cases an

attacker may consider, and some additional edge situations
within remote processes. Local

process injection is simply the execution of
shellcode/arbitrary code within the current

process. Suspended process is the
act of spawning a new, suspended process from an

existing, controlled one and
injecting code into it. This is a fairly common strategy to employ

for
migrating code, setting up backup connections, or establishing a known process
state

prior to injection. The final case is the running remote process.

The running remote process is an interesting case with several caveats that
we’ll explore

below. I won’t detail suspended processes, as it’s essentially
the same as a running process,

but easier. It’s easier because many
applications actually just load the delay library at

runtime, either because
the functionality is environmentally keyed and required then, or

because
another loaded DLL is linked against it and requires it. Refer to the source
code for

the project for an implementation of suspended process injection [3].

Local Process

The local process is the most simple and arguably the most useless for this
strategy. If we can

inject and execute code in this manner, we might as well
link against the library we want to

use. It serves as a fine introduction to
the topic, though.

The first thing we need to do is delay link the executable against something.
For various

reasons I originally chose dnsapi.dll . You can specify delay
load DLLs via the linker

options for Visual Studio.

With that, we need to obtain the RVA for the delay directory. This can be
accomplished with

the following function:

9/13

IMAGE_DELAYLOAD_DESCRIPTOR*

findDelayEntry(char *cDllName)

{

 PIMAGE_DOS_HEADER pImgDos = (PIMAGE_DOS_HEADER)GetModuleHandle(NULL);

 PIMAGE_NT_HEADERS pImgNt = (PIMAGE_NT_HEADERS)((LPBYTE)pImgDos + pImgDos-
>e_lfanew);

 PIMAGE_DELAYLOAD_DESCRIPTOR pImgDelay = (PIMAGE_DELAYLOAD_DESCRIPTOR)
((LPBYTE)pImgDos +

 pImgNt-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT].VirtualAddress)
;

 DWORD dwBaseAddr = (DWORD)GetModuleHandle(NULL);

 IMAGE_DELAYLOAD_DESCRIPTOR *pImgResult = NULL;

 // iterate over entries

 for (IMAGE_DELAYLOAD_DESCRIPTOR* entry = pImgDelay; entry-
>ImportAddressTableRVA != NULL; entry++){

 char *_cDllName = (char*)(dwBaseAddr + entry->DllNameRVA);

 if (strcmp(_cDllName, cDllName) == 0){

 pImgResult = entry;

 break;

 }

 }

 return pImgResult;

}

Should be pretty clear what we’re doing here. Once we’ve got the correct table
entry, we need

to mark the entry’s DllName as writable, overwrite it with our
custom DLL name, and restore

the protection mask:

10/13

IMAGE_DELAYLOAD_DESCRIPTOR *pImgDelayEntry = findDelayEntry("DNSAPI.dll");

DWORD dwEntryAddr = (DWORD)((DWORD)GetModuleHandle(NULL) + pImgDelayEntry-
>DllNameRVA);

VirtualProtect((LPVOID)dwEntryAddr, sizeof(DWORD), PAGE_READWRITE,
&dwOldProtect);

WriteProcessMemory(GetCurrentProcess(), (LPVOID)dwEntryAddr, (LPVOID)ndll,
strlen(ndll), &wroteBytes);

VirtualProtect((LPVOID)dwEntryAddr, sizeof(DWORD), dwOldProtect, &dwOldProtect);

Now all that’s left to do is trigger the targeted function. Once triggered,
the delay helper

function will snag the DllName from the table entry and load
the DLL via LoadLibrary.

Remote Process

The most interesting of cases is the running remote process. For demonstration
here, we’ll be

targeting explorer.exe, as we can almost always rely on it to be
running on a workstation

under the current user.

With an open handle to the explorer process, we must perform the same
searching tasks as

we did for the local process, but this time in a remote
process. This is a little more

cumbersome, but the code can be found in the
project repository for reference[3]. We simply

grab the remote PEB, parse the
image and it’s directories, and locate the appropriate delay

entry we’re
targeting.

This part is likely to prove the most unfriendly when attempting to port this
to another

process; what functionality are we targeting? What function or
delay load entry is generally

unused, but triggerable from the current session?
With explorer there are several options; it’s

delay linked against 9 different
DLLs, each averaging 2-3 imported functions. Thankfully one

of the first
functions I looked at was pretty straightforward: CM_Request_Eject_PC . This

function, exported by CFGMGR32.dll , requests that the system be ejected from
the local

docking station[4]. We can therefore assume that it’s likely to be
available and not fixed on

workstations, and potentially unfixed on laptops,
should the user never explicitly request the

system to be ejected.

When we request for the workstation to be ejected from the docking station, the
function

sends a PNP request. We use the IShellDispatch object to execute
this, which is accessed via

Shell, handled by, you guessed it, explorer.

The code for this is pretty simple:

11/13

HRESULT hResult = S_FALSE;

IShellDispatch *pIShellDispatch = NULL;

CoInitialize(NULL);

hResult = CoCreateInstance(CLSID_Shell, NULL, CLSCTX_INPROC_SERVER,

 IID_IShellDispatch,
(void**)&pIShellDispatch);

if (SUCCEEDED(hResult))

{

 pIShellDispatch->EjectPC();

 pIShellDispatch->Release();

}

CoUninitialize();

Our DLL only needs to export CM_Request_Eject_PC for us to not crash the
process; we

can either pass on the request to the real DLL, or simply ignore
it. This leads us to stable and

reliable remote code injection.

Remote Process – All Fixed

One interesting edge case is a remote process that you want to inject into via
delay loading,

but all imported functions have been resolved in the pseudo IAT.
This is a little more

complicated, but all hope is not lost.

Remember when I mentioned earlier that a handle to the delay load library is
maintained in

its descriptor? This is the value that the helper function
checks for to determine if it should

reload the module or not; if it’s null, it
attempts to load it, if it’s not, it uses that handle. We

can abuse this check
by nulling out the module handle, thereby “tricking” the helper function

into
once again loading that descriptor’s DLL.

12/13

In the discussed case, however, the pseudo IAT is all patched up; no more
trampolines into

the delay load helper function. Helpfully the pseudo IAT is
writable by default, so we can

simply patch in the trampoline function
ourselves and have it instantiate the descriptor all

over again. In short,
this worst-case strategy requires three separate WriteProcessMemory

calls: one
to null out the module handle, one to overwrite the pseudo IAT entry, and one
to

overwrite the loaded DLL name.

Conclusions

I should make mention that I tested this strategy across several next gen
AV/HIPS

appliances, which will go unnamed here, and none where able to detect
the cross process

injection strategy. It would seem overall to be an
interesting challenge at detection; in remote

processes, the strategy uses the
following chain of calls:

OpenProcess(..);

ReadRemoteProcess(..); // read image

ReadRemoteProcess(..); // read delay table

ReadRemoteProcess(..); // read delay entry
1...n

VirtualProtectEx(..);

WriteRemoteProcess(..);

That’s it. The trigger functionality would be dynamic among each process, and
the loaded

library would be loaded via supported and well-known Windows
facilities. I checked out a

few other core Windows applications, and they all
have pretty straightforward trigger

strategies.

The referenced project[3] includes both x86 and x64 support, and has been
tested across

Windows 7, 8.1, and 10. It includes three functions of interest:
inject_local,

inject_suspended, and inject_explorer. It expects to find
the DLL at

C:\Windows\Temp\TestDLL.dll , but this can obviously be changed.
Note that it isn’t

production quality; beware, here be dragons.

Special thanks to Stephen Breen for reviewing this post

References

13/13

[0]
https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-

technical-survey-common-and-trending-process

[1] https://www.microsoft.com/msj/1298/hood/hood1298.aspx

[2]
https://msdn.microsoft.com/en-us/library/windows/desktop/hh769088(v=vs.85).aspx

[3] https://github.com/hatRiot/DelayLoadInject

[4]
https://msdn.microsoft.com/en-us/library/windows/hardware/ff539811(v=vs.85).aspx

https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.microsoft.com/msj/1298/hood/hood1298.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh769088
https://github.com/hatRiot/DelayLoadInject
https://msdn.microsoft.com/en-us/library/windows/hardware/ff539811

