
1/11

The state of advanced code injections
adalogics.com/blog/the-state-of-advanced-code-injections

In the last few years there has been a significant interest in code injection techniques from

both attackers and defenders. These techniques enable the attacker to execute arbitrary code

within the address space of some target process (which is why code injections often are also

called process injections), and attackers, both malware and pentesters, increasingly use these

techniques to bypass anti-malware systems and endpoint protection systems in order to

execute their payloads. Many of these injection techniques are already described in various

blog posts, such as the excellent ones by Endgame here and here, and most recently a large

survey was conducted by researchers from SafeBreach at the most recent Blackhat event with

the content available here. However, many of these surveys are closely attached to the core

programmatic aspects of the injections, whereas they leave out elements of why injections are

necessarily important and when they are used. In this blog post we will cover the state of

code injections from a more general setting such as their motivation, some of their technical

details as well as highlight examples of attacks that have used them. Finally, we give a short

view into the future.

Understanding code injections from beginner to advanced is one of the courses that we offer

as part of our software security training. We currently have a public event scheduled for

the upcoming 44CON in London 9th-11th September 2019 and you can find the necessary

information here. In this course we will teach you the core of these techniques as well as how

to develop sophisticated payloads that rely on code injections. Please consider attending the

training and the conference!

Motivation for code injections, for defenders and attackers

In a general sense, attackers use code injection techniques to mitigate defensive systems.

This includes everything from bypassing host-based intrusion prevention systems, evading

malware sandboxes and avoiding analysis by forensic tools. Naturally, malware has used

these techniques for quite a while and even in back in 2013 Palo Alto reported that 13.5% of

malware samples used code injections, described in the modern malware review report

on page 16 under "analysis avoidance ''. In their report they also give an interesting insight

about the motivation for code injections, namely "Code injection was observed in 13.5

percent of samples. This technique is notable in particular because it allows malware to

hide within another running process. This has the effect of the malware out of view if a user

checks the task manager and can also foil some attempts at application white-listing on the

host". Wayne Low documents even before then, in 2012, the first analysis of the Gapz

malware that explicility used a novel code injection technique that - due to it's novelty -

https://adalogics.com/blog/the-state-of-advanced-code-injections
https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.endgame.com/blog/technical-blog/hunting-memory
https://www.blackhat.com/us-19/briefings/schedule/#process-injection-techniques---gotta-catch-them-all-16010
https://adalogics.com/cyber-security-training
https://44con.com/44con-training/code-injections-from-beginner-to-advanced-for-defenders-and-attackers/
https://media.paloaltonetworks.com/documents/The-Modern-Malware-Review-March-2013.pdf

2/11

bypassed host-based intrusion prevention systems here. Interestingly, the injection that

Gapz deployed used techniques and ideas described around a decade earlier called shatter

attacks, which was even presented at Blackhat in 2004 here.

In the years 2013-2019 the amount of code injections has continued to grow. There are

currently many reports by anti-malware companies documenting the code injections in

malware and I think it's fair to say that now, when a new malware is discovered, it's more

often than not the case that it uses code injection techniques. A recent survey of techniques

by SafeBreach documents 14 techniques invented in 2017-2019, and this leaves out 7 shatter-

like attacks that they do not go in details with as well as a whole domain of techniques in the

process hollowing space, in which several new variants have been discovered in recent years.

Furthermore, malware samples are currently not limiting their injection lifecycle to only one

injection technique, but a recent report shows that Dridex combines five different

injection techniques.

Code injections are not only used by malware. Pentesters, and red teams in general, rely on

these techniques to take control of the systems once they have gotten access to the system.

For example, the famous Meterpreter used by pentesters rely on code injection as well as

related techniques, e.g. self-loading DLLs. Shellterpro is another well-known pentester tool

that is heavily based on code injections. As defensive systems get better, understanding the

design space of code injections can significantly enhance the skills of red teamers, as it allows

you to manually construct payloads and write injection tools that bypass the specific

defensive perimeter of your target. An example of custom tools developed for the purposes of

penetration testing was given at Blackhat in 2014 here.

Brief overviev of code injection foundations

In this section we give a brief introduction to some of the more common-known injection

techniques.

Traditional remote thread creation

This is the most well known injection technique and simply achieves execution in the target

process by instantiating a remote thread. The general procedure is to get access to the target

process using OpenProcess , allocating memory in the process using VirtualAlloc ,

writing malicious code to the allocated memory with WriteProcessMemory and finally

having this code execute using CreateRemoteThread . Naturally, there are many variations

of this injection technique, both in terms of getting access to the remote process, writing

memory to the targets address space and also initiating execution. For example, instead of

opening an existing process, the malware can create a new process with CreateProcess

and inject its code in this new process or rely on lower-level APIs like NtOpenProcess . The

attack can also write to memory using NtWriteVirtualMemory and creating the remote

https://www.virusbulletin.com/virusbulletin/2012/10/code-injection-return-oriented-programming
https://web.archive.org/web/20060904080018/http://security.tombom.co.uk/shatter.html
https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moore-whitepaper.pdf
https://www.bromium.com/dridex-threat-analysis-july-2019-variant/
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/
https://www.shellterproject.com/
https://www.blackhat.com/docs/us-14/materials/us-14-Mesbahi-One-Packer-To-Rule-Them-All-WP.pdf

3/11

thread can be performed with a variety of lower-level APIs like RtlCreateUserThread ,

NtCreateThreadEx and ZwCreateThreadEx . This technique is perhaps the most

commonly used by malware and example reports include Tinba and Emotet.

In general, we can construct a similar-looking attack in many ways. The primitive for writing

memory to the target process need not be WriteProcessMemory , but can be any way of

memory sharing. This includes memory mapped files by way of APIs like ZwCreateSection

and ZwMapViewOfSection and also globally shared memory. Furthermore, from a

programmatic perpective we can also use asynchronous procedure calls rather than explicitly

starting a new thread in the remote process, which we discuss below.

Remote thread creation as decompiled by Ghidra.

Remote thread hijacking

A technique that is closely aligned with creating a remote thread is to hijack a remote thread

instead of creating a new one in the target process. From a high-level point of view, the

difference between this technique and the previous one is that the previous technique creates

a new thread in the target whereas this technique hijacks execution of an exisiting one. One

way to do this is to create a new process, by way of CreateProcess , in suspended mode and

overwrite the entry point of the newly-started process such that it points to our attacker-

controlled code instead. This effectively means the CreateRemoteThread call from before

gets substituted with ResumeThread . A more aggressive approach is to simply suspend

thread execution in the target process and then substitute the thread using SuspendThread .

Code execution is then achieved by exchanging the thread context using

GetThreadContext and SetThreadContext such that the registers of the thread context

points to attacker-controlled memory. Naturally, since the thread execution of the target

process is suspended it is in many scenarios desirable to restore faithful execution in the

target process in order for the system to continue execution unnoticed.

The attacker can also initiate execution of the attacker-controlled memory in the remote

process through asynchronous procedure calls such as QueueUserAPC ,

NtQueueApcThread , ZwQueueApcThread and RtlQueueApcWow64Thread . However, one

https://www.trendmicro.de/cloud-content/us/pdfs/security-intelligence/white-papers/wp_w32-tinba-tinybanker.pdf?_ga=2.231395871.1631440968.1565650174-166280822.1565650174
https://securelist.com/the-banking-trojan-emotet-detailed-analysis/69560/

4/11

of the drawbacks of doing this, however, is that the remote thread must be in an alertable

state to trigger the APC.

Reflective DLL injection

In the previous methods we were mainly concerned with how to achieve code execution in

the remote process. However, a question that comes up once you achieve code execution is

what code to execute. In most cases just executing shellcode doesn't do the job as the

attacker desires to have more comprehensive control. Reflective DLL injection is a technique

that focuses on this aspect of the code-injection design space using a self-loadable DLL file.

Specifically, reflective DLL injection is a technique that creates a DLL such that the DLL has

a minimal Windows loader as an exported function. When this function is triggered the DLL

will load itself inside the process of which it has been written, thus avoiding the need to be

loaded from disk by the regular Windows loader. As such, it is not necessary to, for example,

rely on calls like LoadLibrary to load a fully-fledged library inside the target process.

Rather, the attacker can simply allocate space in the remote process, write the raw DLL

content there, and then execute the exported function in the DLL itself. Lazarus is an

example of malware that uses reflective DLL injection and pentesters published at Blackhat a

white paper on a novel packer that uses reflective DLL injection here.

Custom loading of PE sections in reflective DLL injection. Code for the reflective loader can

be found here.

Process hollowing

A technique closely related to hijacking a remote thread is to simply substitute the entire

memory of the remote process with attacker-controlled memory. Process hollowing does this.

The steps in process hollowing is to create a process in suspended mode, then deallocate the

memory of the suspended process (this is where the "hollow" comes from), write an attacker-

controlled image to the target process and then resume execution of the target process.

https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/lazarus-resurfaces-targets-global-banks-bitcoin-users/
https://www.blackhat.com/docs/us-14/materials/us-14-Mesbahi-One-Packer-To-Rule-Them-All-WP.pdf
https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c

5/11

Effectively, the goal is to explicitly hide execution of the malicious code in disguise of a

benign process. Process hollowing is a commong techniques in malware samples, with an

example report found here.

Unloading of the main module and then reallocating memory for the new executable in ProcessHollowing.

Source code can be found here.

Example of advanced techniques

The majority of injections observed in the wild are of the types described in the previous

section. However, (mostly) in recent years several novel techniques have been discovered

that rely on approaches outside the scope of the previous techniques. These novel techniques

use different API calls to achieve their code injection, sometimes rely on exploit-like

techniques such as return oriented programming and are quite often specific to certain target

applications. However, on an abstract level they still remain close to our most basic

techniques as they still have to (1) communicate with the target process; (2) ensure attacker-

controlled memory is written to the process and (3) trigger execution of attacker-controlled

code in the process. It is important to emphasize in this blog post we only highlight some

examples of these techniques rather than an exhaustive list. In particular, we have prioritised

selection of techniques that have been documented to be used in attacks.

Ghostwriting

The main idea of GhostWriting is to force the target process to write malicious content in it's

address space and force this code to be executed without calling any of OpenProcess ,

VirtualAlloc or CreateRemoteThread , or similar. GhostWriting achieves this by

selecting two atomic gadgets (ROP gadgets), one that writes the value of a register to an

address given by the value of a different register (mov [reg1], reg2) and another gadget

https://www.bromium.com/dridex-threat-analysis-july-2019-variant/
https://github.com/theevilbit/injection/blob/master/ProcessHollowing/ProcessHollowing/ProcessHollowing.cpp

6/11

that simply represents an eternal loop jmp 0x0 . The technique then makes use of

SuspendThread , GetThreadContext , SetThreadContext and ResumeThread to

continuously overwrite memory in the target process. Specifically, it continuously sets the

registers such that they overwrite a given address with the desired content, and then jumps to

the eternal loop. As SetThreadContext allows the attacker to control the registers it is easy to

overwrite the stack - or any other address in the target process - with whichever content the

attacker desires. After the mov [reg1], reg2 gadget executes it returns to the eternal loop

gadget, and the attacker gains control over the execution simply by calling SuspendThread ,

such that the execution does not run in the eternal loop forever. Rather, the "eternal loop" is

used as a temporary safe-state for the attacker to ensure consistency in the target process. A

concrete example of using this is to to create a stackframe to NtProtectVirtualMemory

that sets the necessary permissions for attacker-written shellcode. However, the technique

used for achieving write-what-where and execute-on-demand is far more general and can be

used to write any type of code to the target, e.g. a fully functioning PE file.

A quite interesting aspect of GhostWriting is that the technique was first made public in

2007, yet it still remains largely one or the more sophisticated techniques. The original blog

post explaining the technique is available here.

Shellcode written by the original GhostWriting code. The source can be found here.

The main function that GhostWriting uses to continuously write desired content in target process. By

setting registers in the thread context so they point to selected gadgets GhostWriting maintains control of

the target process.

PowerLoader and PowerLoaderEx

The idea behind PowerLoad is to abuse shared sections in Windows and overwrite several

function pointers inside explorer.exe to point to attacker-controlled memory in the

shared section. Since this shared section is non executable PowerLoader relies on a ROP

http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/
http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/

7/11

chain to execute shellcode within explorer.exe . In more detail, PowerLoader first gets a

handle to a window in explorer.exe . This window contains a pointer to a CTray class

object, which is used for handling messages sent to the particular window. PowerLoader then

uses SetWindowLongPtr to replace this CTray object, such that it now points to memory in

a shared section. Within this shared section, PowerLoader writes its malicious code, which is

a combination of a ROP chain as well as shellcode. PowerLoader then triggers the execution

of the ROP chain by sending the window a message, using SendNotifyMessage . The ROP

chain then overwrites a function within ntdll called atan with shellcode and transfers

execution to this shellcode. This technique was first used by the Gapz malware and has since

been generalised by researchers from Ensilo, that made the attack non-specific to the shared

sections. You can find the source code for PowerLoaderEx here

Message handler in explorer that PowerLoader hijacks.

https://github.com/BreakingMalware/PowerLoaderEx

8/11

AtomBombing

AtomBombing is another technique that uses ROP chains to get code execution in the remote

process. Specifically, AtomBombing abuses the global atom table in Windows to share

memory between processes and undocumented asynchronous procedure calls to force the

target process into calling various functions on behalf of the injecting process. The injecting

process writes a ROP chain and shellcode to the global atom table using the Windows

function GlobalAddAtom . The injector then uses NtQueueApcThread to force the injected

process to call GlobalGetAtomName to store the ROP chain and shellcode inside the target

process. To invoke execution, the injector again uses NtQueueApcThread to force the

injected process to call SetThreadContext to set eip and esp. Eip is set to the address of

ZwAllocateVirtualMemory and esp is set to point to the beginning of the ROP chain. The

injection is, therefore, achieved with a combination of NtQueueApcThread and

GlobalAddAtom . An interesting aspect of AtomBombing is that not long after the

publication of the technique an updated version of the infamous Dridex malware was

discovered, that had adopted a modified version of the AtomBombing technique, and this is

still being used in 2019.

Process Doppelganging

The idea behind doppelganging is to improve the limitations of process hollowing, namely

how the executable memory is written into the target process. Doppelganging achieves this

by way of Windows Transactions. Doppelganging loads a benign executable using

CreateTransaction and CreateFileTransacted , but then overwrites the content of the

transacted file with malicious code, using WriteFile . Doppelganging then creates a section

that holds the tainted transaction, i.e. the transaction that holds the malicious memory, and

then performs a rollback on the transaction. The rollback will undo the changes performed by

the transaction, which in Doppelganging's context is the overwriting of the benign file, so the

changes to the benign file won't actually be commited to the file system. However, the caveat

here is that the content of the section still contains the tainted code. Now, doppelganging

proceeds to create the target process with the content of the malicious section.

Doppelganging creates the process in a low-level way using NtCreateProcess , and,

therefore, has to perform various set-ups for the process to accurately execute, such as setting

up process parameters and create the process's main threads. An example of Process

Doppelganging in the wild was discovered in early 2018.

Earlybird

Early bird refers to a technique that performs a somewhat traditional code injection via

remote thread instantiation early in the process initialisation phase. Specifically, the attacker

creates a new process in suspended mode and then proceeds to allocate and write memory to

the process. In order to trigger execution the malware uses an asynchronous procedure call

and enforces execution of the APC call using the NtTestAlert function. The technique was

discussed by researcher from Cyberbit and even though it received its own name, it is

closely related to earlier techniques traditional injection. This is also confirmed by the fact

that the injection dates back to at least 2012.

https://securityintelligence.com/dridexs-cold-war-enter-atombombing/
https://www.bromium.com/dridex-threat-analysis-july-2019-variant/
https://blog.malwarebytes.com/threat-analysis/2018/08/process-doppelganging-meets-process-hollowing_osiris/
https://www.cyberbit.com/blog/endpoint-security/new-early-bird-code-injection-technique-discovered/
https://research.checkpoint.com/dorkbot-an-investigation/

9/11

Code snippet of Earlybird injection.

ctrl-inject

The ctrl-c key combination is a well-known pattern for exiting and shutting down

applications. The ctrl-inject injection technique exploits the underlying features that makes

this hotkey possible. Specifically, when a user presses the ctrl + c keyword in a console

application a system process (csrss.exe) invokes a function called CtrlRoutine in a

new thread of the given console application. The CtrlRoutine fetches the given handler for

the control signal (ctrl + c) which contains a function pointer that will be called, which

effectively is used to handle the signal. In short, the technique overwrites this signal handler

with a malicious function pointer, such that whenever the signal occurs the malicious handler

will be called.

The strengths of ctrl-inject is that the technique does not rely on any function calls like

CreateRemoteThread , ResumeThread or SetThreadContext , but rather triggers

execution through the csrss.exe process. The technique that triggers the execution is a

simple ctrl-c signal which in many scenarios is considered harmless and unsuspicious. The

drawback of the technique is that it only works with console based applications.

Code that triggers the injection in ctrl-inject. Source code can be found here

https://github.com/theevilbit/injection/blob/master/Ctrlinject/Ctrlinject/Ctrlinject.cpp

10/11

PROPagate

This technique was discovered in late 2017 and uses functionality of window subclassing to

gain code execution in remote processes. Windows subclassing enables programmers to

reuse functionality in existing controls by adding functionality and features to them.

Whenever a window is subclassed, the messages to the original window is intercepted by the

subclassing window which executes its own handlers before sending them on to the parent.

You can read more about subclassing here. Whenever a window is subclassed it gets a new

property called either xSubclassInfo or CC32SubclassInfo and stores the data structures

related to these properties in its address space. This property points to a data structure inside

the subclassed process which contains a function pointer that gets executed in the event of a

message being sent to the window. The idea behind PROPagate is then to write a malicious

data structure inside the remote process and use the SetProp function call to point to this

handler. The attacker then uses SendNotifyMessage to trigger the malicious function

handler. Roughly 8 months after the first documentation of PROPagate by Adam, FireEye

discovered the RIG Exploit Kit delivering a dropper that used PROPagate.

The code that will trigger the PROPagate injection by setting the UxSubclassInfo property within the

target window to a have a fake handler. Source code can be found here

Shatter-style attacks

The final category of code injections that we cover in this course is called Shatter attacks. The

basic idea behind these injections is to misuse the message-oriented way that windows are

architectured within Windows. Specifically, whenever applications use windows they control

these in a message-oriented ways which is a very modular and effective way of managing

windows. For example, when a key is pressed a messaged is sent to the currently active

window stating this key was pressed. However, the way these messages are handled by the

active window is through message handlers, i.e. data structures, and at certain times these

can be overwritten with attacker controlled memory. Since a window can send messages to

other windows on the desktop and we can overwrite memory using previously mentioned

primitives, we can start to construct code injections by overwriting the message handlers in

our target processes and then sending messages that trigger the respective handlers.

Shatter attackers were first presented by Chris Paget (Now Kristine Paget) in 2002, however,

the technique remains relevant. Recently, Hexacorn and Odzhan presented seven new

ways of doing this.

Future outlooks

https://docs.microsoft.com/en-us/windows/win32/controls/subclassing-overview
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
https://www.fireeye.com/blog/threat-research/2018/06/rig-ek-delivering-monero-miner-via-propagate-injection-technique.html
https://github.com/theevilbit/injection/blob/master/PROPagate/PROPagate/PROPagate.cpp
https://web.archive.org/web/20060904080018/http://security.tombom.co.uk/shatter.html
https://twitter.com/Hexacorn
https://modexp.wordpress.com/2019/04/25/seven-window-injection-methods/

11/11

Code injections are continuously being used and there is a trend of increasingly more novel

techniques being researched by defenders as well. For example, even in 2019 alone modexp

has presented at least 15 novel injections (many inspired by Hexacorn), and modern malware

samples use long chains of code injections to execute on the target system, such as the recent

Dridex that uses five in total. The novel techniques are much more specific than the

traditional injection attacks, and are now targeted internal structurse within the target

processes rather than relying purely on common APIs. We can safely expect more exploit-like

scenarios in the future and also new ways of enforcing process separation. Furthermore, even

Academia is now in the field as well, both researching how we can use system-wide execution

to construct highly sophisticated malware that operates across many processes (malwash)

and how to generically analyse novel injection techniques. Code injections are here

to stay and the complexity of them will increase. We highly recommend getting started with

these techniques if you aren't already, and also predict that we will find more defensive tools

and techniques being developed in the near future.

Conclusions

Code injections, also known as process injections, is an important topic in terms of post-

exploitation strategies. Attackers, including both malware and pentesters, use these

injections to execute code in otherwise benign processes as a way to bypass white-lists

deployed by the defense products, e.g. host-based intrusion prevention and endpoint

protection systems. From a defenders point of view we need to ensure our defense systems

are aware of these tricks - and derivates hereof - in order to ensure our automated

procedures are sound. Furthermore, from an attackers point of view, e.g. a pentester, these

techniques can be of great benefit in order to secure access to a target machine. In this blog

post we gave a motivation for both defenders and attackers on why studying code injections

is relevant, and also highlighted technical aspects of several code injection techniques and

attacks that use them.

https://modexp.wordpress.com/
https://www.bromium.com/dridex-threat-analysis-july-2019-variant/
https://www.usenix.org/conference/woot16/workshop-program/presentation/ispoglou
https://acmccs.github.io/papers/p1691-korczynskiA.pdf

