
1/13

Implementing Global Injection and Hooking in Windows
m417z.com/Implementing-Global-Injection-and-Hooking-in-Windows

A couple of weeks ago, Windhawk, the customization marketplace for Windows programs,

was released. You can read the announcement for more details and for the motivation behind

creating it. In this post, I’ll focus on my journey in implementing the technical aspects of

Windhawk. If you prefer reading code to reading text, check out the demo implementation.

Windhawk allows creating mods, which are C++ snippets that are compiled to DLLs and

loaded in third party programs to customize them. The technical challenge is to be able to

load these DLLs in the context of the required processes. For example, one can create a mod

that hooks the MessageBoxW WinAPI function, and define that the mod should apply to all

processes.

Windhawk implements a mod manager which is injected into all processes. Injecting a DLL

into all processes is not a novel task, it has been done multiple times before by antiviruses,

customization tools, and other programs. To the best of my knowledge, these are the most

common approaches:

Using a kernel driver - A nice proof-of-concept implementation can be found here.

Using SetWindowsHookEx - Can be used to install a hook procedure to monitor the

system for certain types of events. Only applies to processes that load user32.dll .

Limited to processes in the same desktop. Has limitations regarding UWP apps.

https://m417z.com/Implementing-Global-Injection-and-Hooking-in-Windows/
https://windhawk.net/
https://ramensoftware.com/windhawk
https://github.com/m417z/global-inject-demo
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messageboxw
https://github.com/wbenny/injdrv
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowshookexw

2/13

Using AppInit_Dlls - A legacy infrastructure that provides an easy way for custom

DLLs to be loaded into the address space of every interactive application. Only applies

to processes that load user32.dll . Starting in Windows 8, the AppInit_DLLs

infrastructure is disabled when secure boot is enabled.

Using esoteric, undocumented hooks - You can see several examples for these in

the Hooking Nirvana talk by Alex Ionescu.

These were my goals for the global injection solution:

Minimal privileges - I wanted Windhawk to be able to run even without

administrator rights. And in general, I preferred to avoid installing a driver which is too

intrusive to my taste and can affect the system’s stability.

Minimal intrusiveness - I preferred to avoid modifying system files or registry

entries, doing all the work in memory, such that all changes are temporary and there’s

no risk of causing permanent damage to the system.

Minimal limitations - I strived to allow customizing as many programs as possible.

For example, I tried to find a solution that is not limited to processes that load

user32.dll , and that has no limitations regarding UWP apps.

Universal solution - I looked for a solution that works on all or most Windows

versions, and that is unlikely to stop working in the future.

Also, it’s worth listing some of the non-goals for the solution:

Stealth - DLL injection is often misused by malware, and one of their goals is staying

undetected for as long as possible. To achieve that, malware authors try to find novel

injection methods which are not known to security vendors and are not detected by

security software. As my project has no malicious intentions, hiding the injection is not

necessary. In fact, I preferred a standard solution that is as transparent as possible.

Security - DLL injection is often used by security software. An antivirus, for example,

may decide to intercept all file access and limit access to sensitive files. In this case, it’s

important to make sure that the limitation can’t be bypassed. My project has no

security implications and doesn’t need to be protected from bypasses.

Looking for the best approach

I started by looking for the approach that fits my goals best. Here’s a table which summarizes

my findings (note that those are not yes/no criteria and the table is mostly a judgment call):

Minimal
privileges

Minimal
intrusiveness

Minimal
limitations

Universal
solution

A kernel driver ❌ ❌ ✅ ✅

SetWindowsHookEx ✅ ✅ ❌ ✅

https://docs.microsoft.com/en-us/windows/win32/dlls/secure-boot-and-appinit-dlls
https://www.youtube.com/watch?v=pHyWyH804xE

3/13

Minimal
privileges

Minimal
intrusiveness

Minimal
limitations

Universal
solution

AppInit_Dlls ❌ ✅ ❌ ❌

Esoteric hooks ❌ ❌ ✅ ❌

Out of the four approaches, the SetWindowsHookEx approach seemed to be the best fit, but

it has its limitations which I hoped to avoid. Also, using SetWindowsHookEx felt like a

misuse of a tool designed for different purposes as I must choose an event to get notified

about, even if I don’t need any.

After some thought, I decided to try another approach: Instead of using a dedicated global

injection mechanism, implement injection for a single process. Then, use it to implement

global injection as following:

Initially, enumerate all processes and inject into each of them.

For each of the injected processes, intercept new process creation (e.g. by hooking the

CreateProcess WinAPI function) and inject into each newly created process.

This approach looks rather obvious and simple to implement, but in practice there are

various tricky details that have to be taken care of. I’ll go through them in this post. I’m sure

this approach was implemented and used before, but I didn’t find a fully working

implementation which I could use as a reference.

Injecting a DLL into a process

Typically, process injection follows these steps: Memory allocation, memory writing, code

execution. I’ve used the classic and straightforward injection method:

VirtualAllocEx for allocating memory in the target process.

WriteProcessMemory for writing the code into the allocated memory.

CreateRemoteThread for creating a new thread in the target process to run the code

that was written.

The injected code loads the DLL, achieving the required task.

This injection method is very old and well known, and there are many tutorials and examples

for it on the internet, so I won’t elaborate further.

Injecting a DLL into all processes

As mentioned before, the idea is to enumerate all processes and inject the DLL into each of

them. To make sure the DLL is also loaded in newly created processes, intercept new process

creation and inject into each newly created process.

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw

4/13

A simple implementation can be found here. A couple of notes about the implementation:

When launched as administrator, the program enables debug privilege. This allows

injecting the DLL into system services. As a result, this enables injecting the DLL into

newly created processes that are launched as administrator, since those processes are

in fact created by the AppInfo service, and so hooking its

CreateProcessInternalW function is required. For details, refer to the blog post

Parent Process vs. Creator Process by Pavel Yosifovich.

CreateRemoteThread doesn’t allow creating a thread in a remote 64-bit process from

a 32-bit process. The wow64ext library is used to overcome this limitation.

In Windows 7, CreateRemoteThread fails if the target process is in a different session

than the calling process. A workaround is to use NtCreateThreadEx instead.

To intercept new process creation, CreateProcessInternalW is hooked. Looks like

all documented process creation functions end up calling it:

CreateProcessA → CreateProcessInternalA →
CreateProcessInternalW

CreateProcessW → CreateProcessInternalW

CreateProcessAsUserA → CreateProcessInternalA →
CreateProcessInternalW

CreateProcessAsUserW → CreateProcessInternalW

The MinHook library is used for hooking the CreateProcessInternalW ,

MessageBoxW functions.

After being injected, the DLL waits for an event to be signaled, then unloads itself.

Refer to the repository’s README file for compiling and running instructions.

At first glance, it seemed to be working nicely and looked pretty much complete. But upon a

closer inspection and after some careful testing, I found that there are several limitations that

have to be addressed.

Inaccessible processes and broken injection chains

Even when the injection program is running as administrator, and even when debug privilege

is enabled, there are processes which are out of reach. Several core system processes in

Windows are marked as Protected Processes, and as the name implies, they’re protected from

https://github.com/m417z/global-inject-demo/tree/686b81b8ed70ababad350f4438eb10023c49443c
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debug-privilege
https://scorpiosoftware.net/2021/01/10/parent-process-vs-creator-process/
https://stackoverflow.com/questions/494284/createremotethread-32-64-and-or-64-32
https://github.com/rwfpl/rewolf-wow64ext
https://securityxploded.com/ntcreatethreadex.php
https://github.com/TsudaKageyu/minhook

5/13

tampering and the injection program can’t inject the DLL into them. That’s not a problem by

itself, these processes are protected for a reason and I’m OK with not being able to fiddle with

them. The real problem is that because they’re protected, CreateProcessInternalW is not

hooked and there’s no opportunity to inject the DLL into processes created by protected

processes, even if the created processes are not themselves protected.

For example, you can see on the screenshot below that services.exe is a protected

process. As a result, the DLL won’t be injected into child svchost.exe processes which are

launched after the injection program. svchost.exe processes which were already running

are handled by the process enumeration.

A similar problem exists when the injection program is not running as administrator - it can’t

inject the DLL into elevated processes, which is a security limitation and that’s OK, but it also

loses the opportunity to inject into unelevated processes created by elevated processes.

6/13

For example, in the screenshot below Windows Explorer was restarted via the Task Manager.

The new explorer.exe process was created by winlogon.exe , which is elevated.

Another common example where an elevated process creates an unelevated process is when a

process crashes. See the screenshot below from the presentation Exploiting Errors in

Windows Error Reporting by Gal De Leon. In this case, the injection program misses the

opportunity to inject the DLL into WerFault.exe which is unelevated. WerFault.exe

may in turn restart the crashed program, and it will be missed as well.

The solution that I came up with is to make the injection program monitor for new process

creation, and for each newly created process, try to inject into it from the injection program.

If the new process was created by an inaccessible process, the injection program injects the

DLL, as depicted below.

https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Exploiting%20Errors%20in%20Windows%20Error%20Reporting.pdf
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-registerapplicationrestart

7/13

If, on the other hand, the new process was created by a process with an injected DLL, there’s

a race between the creating process and the injection program. I used a mutex to make sure

only one of them injects the DLL, as depicted below.

This approach works, but it has a serious drawback - if the new process is created by an

inaccessible process, the DLL is injected asynchronously, possibly after the new process

begins running, which might be too late depending on the customization use case.

Unfortunately, I didn’t find a better solution, and because this problem is not very common

(especially if the injection program is running as administrator), it’s not too bad.

Also, this solution created a new problem which is described below, which was happening

when the injection program injected the DLL too early.

Too early injections that break stuff

After implementing the solution above, I noticed that sometimes, new processes failed to

start. After a bit of investigation, I saw that it only happened with console programs. And

after more investigation, I found the root cause.

8/13

All user mode threads begin their execution in the LdrInitializeThunk function. The first

thread that a process runs performs process initialization tasks before the execution is

transferred to the user-supplied thread entry point. One of the process initialization tasks is

creating the console window in case the process is a console process. For more details about

the LdrInitializeThunk function, check out this blog post by Ken Johnson.

Normally, a new process starts with a single, suspended thread. Then, the Client/Server

Runtime Subsystem (csrss.exe) gets notified about the new process that was just created,

and does its own handling. Finally, the suspended thread is resumed, the

LdrInitializeThunk function performs process initialization tasks and transfers the

execution to the process entry point.

With the injection program injecting the DLL too early, the new process starts with a single,

suspended thread, as usual. But before the Client/Server Runtime Subsystem (csrss.exe)

gets notified about it, the injection program creates a new thread in the new process which

starts executing right away (marked with red in the image below). As the first running thread,

it performs the process initialization tasks. Only then, csrss.exe gets notified about the

new process, but it doesn’t expect the process to have an initialized console, and returns an

error.

http://www.nynaeve.net/?p=205

9/13

To overcome this and other potential problems caused by the early injected thread execution,

I switched from creating a new thread with CreateRemoteThread to queuing an APC

(Asynchronous Procedure Call) in cases when the process didn’t start executing yet. For a

great technical blog post about APCs check out APC Series: User APC API by Ori Damari. A

couple of notes about the implementation:

The undocumented NtQueueApcThread function is used, since the documented

QueueUserAPC function is not suited for inter-process APC queuing because of the

activation context handling.

NtQueueApcThread doesn’t allow queuing an APC in a remote 64-bit process from a

32-bit process. The wow64ext library is used to overcome this limitation.

For queuing an APC in a remote 32-bit process from a 64-bit process, the address

parameter has to be encoded. I used the APC Series: KiUserApcDispatcher and Wow64

blog post by Ori Damari as a reference.

https://repnz.github.io/posts/apc/user-apc/
https://github.com/rwfpl/rewolf-wow64ext
https://repnz.github.io/posts/apc/wow64-user-apc/

10/13

But how does the injection program know whether the process started executing (and then

CreateRemoteThread is used as before) or not (and then an APC is queued)? It checks

whether there’s only a single thread, and if so, whether it’s suspended with the instruction

pointer at RtlUserThreadStart . In that case it concludes that the process didn’t start

executing and queues an APC instead of creating a remote thread.

Supporting UWP apps

The next thing I noticed is that the DLL wasn’t getting injected into processes of UWP apps

such as Windows Calculator. The code to load the DLL was being injected successfully, but

the DLL failed to load with ERROR_ACCESS_DENIED . The problem was that UWP apps have

limited access to the filesystem and they didn’t have permissions to load the DLL. Changing

the DLL file permissions fixed this issue. For example, the following commands can be used

to change the DLL file permissions such that UWP apps are able to load it:

icacls global-inject-lib.dll /grant everyone:RX
icacls global-inject-lib.dll /grant *S-1-15-2-1:RX
icacls global-inject-lib.dll /grant *S-1-15-2-2:RX

Another problem was that a mutex can’t be shared between the injection program and UWP

apps by using the same mutex name. UWP apps are sandboxed, and each UWP app has its

own object directory. A UWP app can’t refer to objects outside of its object directory by

name. I was able to overcome this limitation by using the little-known private namespaces

API. For a great overview of named objects in Windows, including the UWP sandboxing and

private namespaces, check out the blog post A Brief History of BaseNamedObjects on

Windows NT by James Forshaw.

Process mitigation policy and system errors

Another case in which the DLL wasn’t getting injected into processes was for processes with a

mitigation policy that restricts image loading to images that are signed. On my test Windows

10 machine there were two such processes: fontdrvhost.exe and svchost.exe which

hosts the DiagTrack service (diagtrack.dll).

https://docs.microsoft.com/en-us/windows/win32/api/namespaceapi/nf-namespaceapi-createprivatenamespacew
https://www.tiraniddo.dev/2019/02/a-brief-history-of-basenamedobjects-on.html

11/13

Similarly to the UWP case, the code to load the DLL was being injected successfully, but the

DLL failed to load, this time with ERROR_INVALID_IMAGE_HASH . But unlike the UWP case,

there’s no straightforward workaround. I could try and use reflective DLL injection

(manually loading the DLL from memory), but I didn’t bother since it complicates the

solution and might have pitfalls for the little benefit of being able to customize programs

which are not very interesting anyway.

I was OK with not being able to customize programs with this mitigation, but this limitation

had an unpleasant side effect. In some cases, Windows was displaying a system error when

the DLL loading failed:

https://github.com/stephenfewer/ReflectiveDLLInjection

12/13

The system error can be reproduced by running the following program and then running the

injection program:

#include <windows.h>

int WINAPI WinMain(
 HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nShowCmd
)
{
 PROCESS_MITIGATION_BINARY_SIGNATURE_POLICY p = { 0 };
 p.MicrosoftSignedOnly = 1;
 if (SetProcessMitigationPolicy(ProcessSignaturePolicy, &p, sizeof(p))) {
 MessageBox(NULL, L"Mitigation applied, press OK to exit", L"", MB_OK);
 }
}

After some investigation, I found that this behavior can be controlled with the

SetErrorMode, SetThreadErrorMode WinAPI functions. I used SetThreadErrorMode to

turn off the critical-error-handler message box while trying to load the DLL.

Hooking performance

After handling all of the limitations above, the solution felt pretty solid and I didn’t encounter

any other problems. But after using the computer with it for a while, I noticed that it takes

noticeably longer for some programs to launch. The reason for this was that MinHook, the

hooking library that I used, enumerates all the threads on the system and looks for threads

that belong to the current process to suspend them. Enumerating all system threads can be

very slow, on my system it took more than 300 milliseconds. I improved this by doing the

following:

https://docs.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-seterrormode
https://docs.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-setthreaderrormode
https://github.com/TsudaKageyu/minhook
https://github.com/TsudaKageyu/minhook/blob/4a455528f61b5a375b1f9d44e7d296d47f18bb18/src/hook.c#L263-L324

13/13

Instead of enumerating all threads on the system, I use the undocumented

NtGetNextThread function to directly enumerate threads that belong to the current

process. In addition to improving performance, it also improves stability by avoiding

race conditions. For a comprehensive overview, check out the Suspending Techniques

research by diversenok.

When injecting into a process which didn’t start executing yet, I skip the thread

enumeration altogether, since there should be no other running threads anyway.

You can find the code that enables this in my MinHook multihook branch. Among other

changes the branch has is the ability for a function to be hooked more than once. In general, I

found that reliable function hooking is more tricky than it might seem at first. For example,

consider what happens if a DLL sets a hook and then needs to be unloaded. When is it safe to

unload it? Can you be sure? But that’s a topic for another post.

Implementation code and summary

An implementation that handles all the limitations mentioned in this post can be found here.

I’m pretty satisfied with the result. I’ve been using my computer with Windhawk, which uses

this global injection and hooking implementation, for several months, and I didn’t experience

any stability, performance, or any other problems. I hope that Windhawk will prove itself as a

reliable tool for customizing Windows programs, and I invite you to try it out.

Written on April 18, 2022

https://github.com/diversenok/Suspending-Techniques#snapshot--suspend-threads-not-covered
https://github.com/m417z/minhook/tree/multihook
https://github.com/m417z/global-inject-demo
https://windhawk.net/

