
Kyle Avery February 1, 2024

Unmanaged .NET Patching
outflank.nl/blog/2024/02/01/unmanaged-dotnet-patching

To execute .NET post-exploitation tools safely, operators may want to modify certain managed functions. For example, some
C# tools use the .NET standard library to terminate their process after execution. This may not be an issue for fork&run
implementations that spawn a sacrificial process, but executing in-process will terminate an implant. One could write a small
.NET program that resolves and patches these functions, but we were interested in an unmanaged approach (i.e. a
unmanaged implant executing managed code in-process). While our example targets System.Environment.Exit, a similar
technique should work for any managed function.

In January 2022, I uploaded a functional example of this approach to my personal GitHub. However, the implementation was a
part of a larger project, and I’ve received a few questions about the technique, so I created this standalone example and
writeup. You can find the proof-of-concept code here: https://github.com/outflanknl/unmanaged-dotnet-patch.

Resolving Function Pointers from Managed Code

To better understand the process of resolving managed function pointers, let’s start by writing a C# implementation. This idea
was first demonstrated by Peter Winter-Smith, in his post Massaging your CLR. First, the program describes the target method
using its class, name, and binding constraints. Binding constraints describe attributes of a function, such as accessibility and
scope.

Type exitClass = typeof(System.Environment);
string exitName = "Exit";
BindingFlags exitBinding = BindingFlags.Static | BindingFlags.Public;

The System.Type class provides several overloads for GetMethod that accept different information to describe a target method.
The following code resolves the System.Reflection.MethodHandle value for the Exit function. This handle points to metadata
about the method, not the implementation. One member function of this method handle, GetFunctionPointer, will return the
implementation start address.

https://www.outflank.nl/blog/2024/02/01/unmanaged-dotnet-patching/
https://github.com/kyleavery/inject-assembly/blob/8db977c0fd1da039df920f9dd4840d4a3ec2aa2c/src/scmain.c#L462-L613
https://github.com/outflanknl/unmanaged-dotnet-patch
https://twitter.com/peterwintrsmith
https://www.mdsec.co.uk/2020/08/massaging-your-clr-preventing-environment-exit-in-in-process-net-assemblies/


MethodInfo exitInfo = exitClass.GetMethod(exitName, exitBinding);
RuntimeMethodHandle exitRtHandle = exitInfo.MethodHandle;
IntPtr exitPtr = exitRtHandle.GetFunctionPointer();

As you may have realized, targeting static methods is much simpler than targeting instance methods. It is still possible to target
instance methods, but patching may be more difficult in some circumstances. Fortunately, we needed a patch for
System.Environment.Exit, a static method.

Resolving Function Pointers from Unmanaged Code

Now that we have a strategy to resolve function pointers from managed code, we can move on to an unmanaged
implementation. The unmanaged COM interfaces for .NET can resolve and execute managed methods. The approach
described below mirrors the managed approach, using COM to resolve and execute the required reflection methods.

Loading Managed Libraries

First, our program must resolve the .NET standard library, mscorlib. We can then use this pointer to resolve any .NET
framework classes. The following code will find the default AppDomain and then execute Load_2 to resolve mscorlib.

IUnknownPtr appDomainUnk;
corRtHost->GetDefaultDomain(&appDomainUnk);

_AppDomain* appDomain;
appDomainUnk->QueryInterface(IID_PPV_ARGS(&appDomain));

_Assembly* mscorlib;
appDomain->Load_2(SysAllocString(L"mscorlib, Version=4.0.0.0"), &mscorlib);

If you’re attempting to patch a method outside of mscorlib, you must also load that assembly. If the system you are targeting
has only one version of the .NET framework, you should be able to load mscorlib using its name alone. Specify the version or
full name for production tools to ensure they load the correct assembly. You can retrieve the full name of an assembly on disk
using PowerShell:



[Reflection.AssemblyName]::GetAssemblyName(<Assembly Path>).FullName

Resolving Managed Functions

The code below implements our previous managed approach using COM to resolve and invoke the same methods. First, we
describe the Exit method using its class name, name, and binding constraints to resolve its method info pointer.

_Type* exitClass;
mscorlib->GetType_2(SysAllocString(L"System.Environment"), &exitClass);

_MethodInfo* exitInfo;
BindingFlags exitFlags = (BindingFlags)(BindingFlags_Public | BindingFlags_Static);
exitClass->GetMethod_2(SysAllocString(L"Exit"), exitFlags, &exitInfo);

Next, we resolve the MethodHandle property and retrieve the value for Exit. The unmanaged syntax differs significantly from our
managed equivalent because MethodHandle is an instance property of the MethodInfo class.

_Type* methodInfoClass;
mscorlib->GetType_2(SysAllocString(L"System.Reflection.MethodInfo"), &methodInfoClass);

_PropertyInfo* methodHandleProp;
BindingFlags methodHandleFlags = (BindingFlags)(BindingFlags_Instance | BindingFlags_Public);
methodInfoClass->GetProperty(SysAllocString(L"MethodHandle"), methodHandleFlags, &methodHandleProp);

VARIANT methodHandlePtr = {0};
methodHandlePtr.vt = VT_UNKNOWN;
methodHandlePtr.punkVal = exitInfo;

SAFEARRAY* methodHandleArgs = SafeArrayCreateVector(VT_EMPTY, 0, 0);
VARIANT methodHandleVal = {0};
methodHandleProperty->GetValue(methodHandlePtr, methodHandleArgs, &methodHandleVal);



Finally, the program can resolve and execute GetFunctionPointer. Again, the unmanaged syntax looks quite different because
it is an instance method of the RuntimeMethodHandle class.

_Type* rtMethodHandleType;
mscorlib->GetType_2(SysAllocString(L"System.RuntimeMethodHandle"), &rtMethodHandleType);

_MethodInfo* getFuncPtrMethodInfo;
BindingFlags getFuncPtrFlags = (BindingFlags)(BindingFlags_Public | BindingFlags_Instance);
rtMethodHandleType->GetMethod_2(SysAllocString(L"GetFunctionPointer"), getFuncPtrFlags, &getFuncPtrMethodInfo);

SAFEARRAY* getFuncPtrArgs = SafeArrayCreateVector(VT_EMPTY, 0, 0);
VARIANT exitPtr = {0};
getFuncPtrMethodInfo->Invoke_3(methodHandleValue, getFuncPtrArgs, &exitPtr);

Patching the Function

The address of System.Environment.Exit should now be stored in exitPtr.byref. We can disable the function by patching a
“return” instruction at the beginning of its implementation. The return instruction on x86 and x86_64 is 0xC3, so the same patch
should work regardless of the .NET assembly and system architectures. The following code demonstrates a simple patching
technique. The memory protection of our target is modified to allow modification and then restored.

DWORD oldProt = 0;
BYTE patch = 0xC3;

printf("[U] Exit function pointer: 0x%p\n", exitPtr.byref);

VirtualProtect(exitPtr.byref, 1, PAGE_EXECUTE_READWRITE, &oldProt);
memcpy(exitPtr.byref, &patch, 1);
VirtualProtect(exitPtr.byref, 1, oldProt, &oldProt); 

This solution, while straightforward, could lead to issues with tools that rely on System.Environment.Exit to terminate
execution. In this case, a different patch may be more appropriate, but that topic is beyond the scope of this post.



We can use the following .NET program to test our patch. This program will use managed code to find the function address
and compare it to the address from our unmanaged implementation.

Type exitClass = typeof(System.Environment);
string exitName = "Exit";
BindingFlags exitBinding = BindingFlags.Static | BindingFlags.Public;

MethodInfo exitInfo = exitClass.GetMethod(exitName, exitBinding);
RuntimeMethodHandle exitRtHandle = exitInfo.MethodHandle;
IntPtr exitPtr = exitRtHandle.GetFunctionPointer();

Console.WriteLine("[M] Exit function pointer: 0x{0:X16}", exitPtr.ToInt64());
System.Environment.Exit(0);
Console.WriteLine("[M] Survived exit!");

Executing this assembly with the unmanaged host program from the POC repository should produce the following result. Both
implementations locate the same address, and the .NET program successfully survives a call to Exit.

Credits and References

The managed implementation used to patch System.Environment.Exit comes from Peter Winter-Smith. His MDSec blog
“Massaging your CLR” inspired our unmanaged approach.
I published my PoC on Outflank’s GitHub: https://github.com/outflanknl/unmanaged-dotnet-patch

https://github.com/outflanknl/unmanaged-dotnet-patch
https://twitter.com/peterwintrsmith
https://www.mdsec.co.uk/2020/08/massaging-your-clr-preventing-environment-exit-in-in-process-net-assemblies/
https://github.com/outflanknl/unmanaged-dotnet-patch

