
1/21

LayeredSyscall – Abusing VEH to Bypass EDRs
whiteknightlabs.com/2024/07/31/layeredsyscall-abusing-veh-to-bypass-edrs

Adhithya Suresh Kumar
July 31, 2024
Uncategorized

Asking any offensive security researcher how an EDR could
be bypassed will result one of many possible answers, such as removing hooks, direct
syscalls, indirect syscalls, etc. In this blog post, we will take a different perspective to abuse
Vectored Exception Handlers (VEH) as a foundation to produce a legitimate thread call stack
and employ indirect syscalls to bypass user-land EDR hooks.

Disclaimer: The research below must only be used for ethical purposes. Please be
responsible and do not use it for anything illegal. This is for educational purposes only.

Introduction

EDRs use user-land hooks that are usually placed in ntdll.dll or sometimes within the
kernel32.dll that are loaded into every process in the Windows operating system. They
implement their hooking procedure typically in one of two ways:

Patch the first few bytes of the function to be hooked with a redirection (similar to the
Microsoft Detours library)
Overwrite the function address within the IAT table of a dll that uses the function

Hooks are not placed in every function within the target dll. Within ntdll.dll, most of the
hooks are placed in the Nt* syscall wrapper functions. These hooks are often used to
redirect the execution safely to the EDR’s dll to examine the parameters to determine if the
process is performing any malicious actions.

Some popular bypasses for circumventing these hooks are:

Remapping ntdll.dll: Accessing a fresh copy of ntdll either from disk or KnownDll
cache and remapping the hooked version with the fresh copy, either the section or the
specific function bytes.
Direct syscalls: Emulate what the Nt* syscall wrappers do within your program using
the corresponding SSN and the syscall opcode.
Indirect syscalls: Set up the syscall parameters within your program and redirect
execution using a jmp instruction to the address within ntdll.dll where the syscall
opcode resides.

https://whiteknightlabs.com/2024/07/31/layeredsyscall-abusing-veh-to-bypass-edrs/
https://whiteknightlabs.com/
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://www.paloaltonetworks.com/blog/security-operations/a-deep-dive-into-malicious-direct-syscall-detection/
https://redops.at/en/blog/direct-syscalls-vs-indirect-syscalls


2/21

There are more bypass techniques, such as blocking any unsigned dll from being loaded,
blocking the EDR’s dll from being loaded by monitoring LdrLoadDll, etc.

On the flipside, there are detection strategies that could be employed to detect and perhaps
prevent the above-mentioned evasion techniques:

Detecting Remapping ntdll.dll
If a process contains two instances of ntdll.dll within its memory space, it is
usually a clear sign of suspicious behavior.

Detecting Direct Syscalls
When direct syscalls are performed, the EDR could register an instrumentation
callback to check where the user-land code resumes from. And if it returned to
the process rather than returning to the ntdll.dll address space, then it is a clear
indication that a direct syscall took place.

Detecting Indirect Syscalls
Since this technique involves jumping to the ntdll.dll address space to perform the
syscall event, the previous detection would fail. However, a thread call stack
analysis would reveal that there is an anomalous behavior since there are no
legitimate calls through various Windows APIs, rather it is just the process to
ntdll.dll.

The research presented below attempts to address the above detection strategies.

LayeredSyscall – Overview

https://malwaretech.com/2024/02/bypassing-edrs-with-edr-preload.html


3/21

LayeredSyscall – Overview of the control flow

The general idea is to generate a legitimate call stack before performing the indirect syscall
while switching modes to the kernel land and also to support up to 12 arguments.
Additionally, the call stack could be of the user’s choice, with the assumption that one of the
stack frames satisfies the size requirement for the number of arguments of the intended Nt*
syscall. The implemented concept could also allow the user to produce not only the
legitimate call stack but also the indirect syscall in between the user’s chosen Windows API,
if needed.

Vectored Exception Handler (VEH) is used to provide us with control over the context of the
CPU without the need to raise any alarms. As exception handlers are not widely attributed as
malicious behavior, they provide us with access to hardware breakpoints, which will be
abused to act as a hook.

To note, the call stack generation mentioned here is not constructed by the tool or by the
user, but rather performed by the system, without the need to perform unwinding operations
of our own or separate allocations in memory. This means the call stack could be changed by
simply calling another Windows API if detections for one are present.

VEH Handler #1 – AddHwBp

We register the first handler required to set up the hardware breakpoint at two key areas, the
syscall opcode and the ret opcode, both within Nt* syscall wrappers within ntdll.dll.



4/21

The handler is registered to handle EXCEPTION_ACCESS_VIOLATION, which is generated by
the tool, just before the actual call to the syscall takes place. This could be performed in
many ways, but we’ll use the basic reading of a null pointer to generate the exception.

However, since we must support any syscall that the user could call, we need a generic
approach to set the breakpoint. We can implement a wrapper function that takes one
argument and proceeds to trigger the exception. Furthermore, the handler can retrieve the
address of the Nt* function by accessing the RCX register, which stores the first argument
passed to the wrapper function.

Triggering ACCESS_VIOLATION exception

Once retrieved, we perform a memory scan to find out the offset where the syscall opcode
and the ret opcode (just after the syscall opcode) are present. We can do this by checking
that the opcodes 0x0F and 0x05 are adjacent to each other like in the code below.

Finding syscall opcode by scanning the memory

Syscalls in Windows as seen in the following screenshot are constructed using the opcodes,
0x0F and 0x05. Two bytes after the start of the syscall, you can find the ret opcode, 0xC3.

syscall opcode – 0xF and 0x5; ret opcode – 0xC3

Hardware breakpoints are set using the registers Dr0, Dr1, Dr2, and Dr3 where Dr6 and
Dr7 are used to modify the necessary flags for their corresponding register. The handler
uses Dr0 and Dr1 to set the breakpoint at the syscall and the ret offset. As seen in the



5/21

code below, we enable them by accessing the ExceptionInfo->ContextRecord->Dr0 or
Dr1. We also set the last and the second bit of the Dr7 register to let the processor know that
the breakpoint is enabled.

AddHwBp() Exception Handler for ACCESS_VIOLATION

As you can see in the image below, the exception is thrown because we are trying to read a
null pointer address.

Disassembly of exception triggering code

Once the exception is thrown, the handler will take charge and place the breakpoints.



6/21

Placing the breakpoint at syscall opcode

Take note, once the exception is triggered, it is necessary to step the RIP register to the
number of bytes required to pass the opcode that generated the exception. In this case, it
was 2 bytes.

Incrementing RIP past the exception triggering code

After that, the CPU will continue the rest of the exception and this will perform as our hooks.
We will see this performed in the second handler below.

VEH Handler #2 – HandlerHwBp

This handler contains three major parts:

To save the context and initiate the generation of the user-chosen call stack
To properly return to the process without crashing
To find the right place to redirect the execution and bypass the hook by performing an
indirect syscall

Part #1 – Handling the Syscall Breakpoint



7/21

Hardware breakpoints, when executed by the system, generate an exception code,
EXCEPTION_SINGLE_STEP, which is checked to handle our breakpoints. In the first order of the
control flow, we check if the exception was generated at the Nt* syscall start using the
member ExceptionInfo->ExceptionRecord->ExceptionAddress, which points to the
address where the exception was generated.

Checking for the hardware breakpoint at the syscall opcode

We proceed to save the context of the CPU when the exception was generated. This allows
us to query the arguments stored, which according to Microsoft’s calling convention, are
stored in RCX, RDX, R8, and R9, and also allows us to use the RSP register to query the rest
of the arguments, which will be further explained later.

Changing control flow to the benign function

Once stored, we can change the RIP to point to our demo function; in this case, we use a
simple MessageBox().

Debugger view of changing the RIP to the benign function start address

The demo function below is responsible for generating the legitimate call stack we require,
and this could be changed by the user as needed.



8/21

MessageBox() being used as the demo function

Part #2 – Generating Legitimate Call Stack

The general idea is to redirect the execution to the benign Windows API call, then generate
the legitimate call stack and redirect to execute the indirect syscall. Although we have hooks
at the syscall and ret instruction, there comes a problem where we would need to know
where to stop the execution to redirect to execute the indirect syscall.

We use the Trap Flag (TF) that is used by debuggers to perform single-step execution. There
are other ways to do this part, like using ACCESS_VIOLATION, page guard violation, etc. To
enable the trap flag, we can use the EFlags register. Since we already have access to the
context, we can enable it using the following snippet of code.

Enabling trace flag to handle instruction tracing

To generate the legitimate call stack, we need to wait for a certain condition to take place by
the system (i.e., the calls must reach the address space of ntdll.dll because most Nt*
syscalls are usually redirected from within ntdll.dll). This ensures that the call stack looks as
legitimate as possible to the eye of an observer, if not too keen that is.

This could be checked in many ways, but for the sake of simplicity, we can get the handle to
ntdll.dll and use GetModuleInformation() to get the base and the end of the dll. Once
queried, we can check if the exception address, which is generated due to the trap flag, is
within its address space.



9/21

Storing the information of ntdll.dll base and end address

We use a simple structure to store the information, which is initialized at the start of the tool.

DllInfo struct definition

If the conditions are satisfied, we can proceed to redirect the execution to the intended
syscall. This would first require us to retrieve the saved context that we had from breaking at
the syscall opcode and setting up the syscall.

Syscalls in Windows are set up in the following manner:

How syscalls look in windows

We need to retrieve the saved context, but before that, we will need to save the current stack
pointer, RSP, to a temp variable so that it can be retrieved. Since overwriting the stack pointer
with the saved stack pointer would change the call stack entirely, which would defeat our
purpose, we need to save and restore the current stack pointer just after the copy.

Storing the stack pointer to restore it later

This keeps the call stack from changing and, at the same time, have our initial state of
arguments from the intended syscall.



10/21

EDR hooks are usually placed in the form of jmp instructions at the start or a couple of
instructions later from the Nt* syscall start address.

How EDR usually hooks into a function

So, if we emulate the syscall functionality within our handler, and then change the RIP to the
syscall opcode address, we can effectively bypass the EDR hook without the need to touch
it.

Emulating the syscall within our exception handler

We can proceed to emulate the syscall before changing the RIP to the syscall opcode.

Debugger view of emulating the syscall in the exception handler

This vectored syscall approach was previously documented here: Bypassing AV/EDR Hooks
via Vectored Syscall. This would avoid the usage of inline assembly code, or accessing the
context using winapis.

But there is a catch. Some functions called within the system support argument count less
than 4, but if we want to support almost all syscalls then we would need to support up to 12
at least.

https://cyberwarfare.live/bypassing-av-edr-hooks-via-vectored-syscall-poc/


11/21

Part #2.5 – Support >4 Arguments

While generating our call stack using Windows APIs, we also need to consider the size of the
stack that each of those Windows APIs allocates. This is crucial to us since the Windows
calling convention stores arguments greater than 4 within the stack space.

The Windows calling convention works as follows,

Store the first 4 arguments within the registers, RCX, RDX, R8, and R9
Allocate 8 bytes for the return address
Allocate another 4 x 8 bytes, for saving the first 4 arguments
Allocate for variables and other stuff



12/21

How stack is set up in windows

For further reference, check out the following: Windows x64 Calling Convention: Stack
Frame

So this means we would need to first find an appropriate function that would support a stack
size of up to 12 arguments, which we could consider as greater than 0x58 bytes. Once we
manage to find an appropriate function, we need to wait for that function to execute a call
instruction to some other function. This call instruction will be intersected the moment it

https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/windows-x64-calling-convention-stack-frame


13/21

touches the inner function. This is to make sure that not only do we have enough stack
space allocated but also a legitimate return address to run back to. To do this, we can once
again use our memory scanning approach, although with a few caveats that we will solve.

As shown in the following screenshot, we do not have enough stack space in certain function
frames to store more than 4 arguments without corrupting the stack.

Call stack if inappropriate function

Most function frames allocate the stack at the beginning of the function by using the sub
rsp, #size instruction.

Checking for the appropriate stack size

We can find a match to this instruction by checking the opcode, 0xEC8348, and extracting the
highest byte will result in the size of the stack in most cases.



14/21

Finding the right size, in this case 0x58 or greater

One major caveat is that sometimes the function frames can be smaller than expected, and
in such cases, it is easy to reach the end of the frame, which is usually a ret instruction.
Therefore, we will need to break the loop if we find the ret opcode before finding the stack
size. This can be checked by adding the following snippet of code:

Exiting in case the function frame is short

We use a global flag, IsSubRsp, to find out if we performed the first step, which leads us to
the second step: wait until a call instruction takes place within the same function frame we
want.

Checking if the function frame contains call instruction

Again, this can be done by checking the exception address against the opcode of the call
instruction, 0xE8.

Appropriate function frame found



15/21

Another caveat is to make sure that the function frame does not exit, which would mean we
reset our counter back to 0 to let it know that we are yet to find the appropriate function.

Assuming that we find the right function frame that both contains the appropriate stack size
and also proceeds to execute a call instruction, we can proceed to store the rest of the
arguments from the saved context onto the stack frame we just found. It starts from 5 x 8
bytes after that start RSP.

Storing all the arguments in the stack

Hence, this allows for a clean stack, without corrupting the stack by overwriting the return
values due to the lack of stack space. The call stack integrity is maintained.

Appropriate stack found

So, this would mean that our constraints changed to:

The calls must reach into ntdll.dll address space
The call must support the appropriate stack size
The call must support the calling of another function within itself

Part #3 – Handling the ret Breakpoint

Once the stack is set up and the syscall is executed, it will proceed to hit the ret opcode
where we had already placed the hardware breakpoint. The final step is to ensure that we
can return safely to the original calling function and not to the user-chosen Windows API



16/21

function we used to generate the call stack, although that could also be done and we will
discuss it later.

Since the stack frame is currently pointing to the legitimate call stack from the Windows API
that was invoked, once ret is executed, it will immediately return to normal execution.
Rather, we could point it back to the saved context’s RSP, which would make ret pop the
address out of the stack and return to the function that called the Nt* syscall, bypassing the
need to execute any further for the legitimate Windows API call.

Returning back to our original wrapper function

We also clear the registers from the hardware breakpoints we set so that we can reuse them
for multiple syscalls.

Debugger view of restoring the stack

Exposing the Function Wrappers

We have provided a header file within our tool that needs to be included to use the wrapper
functions for the Nt* syscall. This was inspired by the work done by rad9800, which you can
check out over here, TamperingSyscals

By parsing SysWhispers3‘s prototypes, we can generate the header file for the syscall we
prefer.

https://x.com/rad9800
https://github.com/rad9800/TamperingSyscalls
https://github.com/klezVirus/SysWhispers3/blob/master/data/prototypes.json


17/21

Wrapper function to call the original Nt* syscall

Since the SSN of the syscalls keeps changing for every version of Windows, we also need to
support grabbing the SSN dynamically for the version of Windows that is currently running on
the system. So we included the GetSsnByName() provided by MDSec over here, Resolving
System Service Numbers using the Exception Directory There are various methods to
retrieve SSN, like Halo’s gate, the Syswhispers tool, and others.

Usage

Below is a sample piece of code to show the usage of how the function wrappers could be
used. We have included the commonly used syscall functions from ntdll.dll within the
header file in the tool.

Usage of LayeredSyscall with the NtCreateUserProcess syscall

Results

https://www.mdsec.co.uk/
https://www.mdsec.co.uk/2022/04/resolving-system-service-numbers-using-the-exception-directory/


18/21

Call Stack Analysis

Before our tool is executed, the indirect syscall will produce the call stack. This is a clear
indication of suspicious behavior since no legitimate function calls are going through till it
reaches ntdll.dll.

Thread call stack of an indirect syscall taking place

Now, once our tool runs, we can see the call stack generated when the syscall took place.

Legitimate thread call stack with LayeredSyscall



19/21

Testing Against an EDR

We also chose to showcase the efficacy of this tool by testing this against an existing EDR.
Sophos Intercept X was chosen for our test environment.

As for the malicious method we wanted to test, we went with the age old Process Hollowing
technique. Since it is a widely detected technique, it would be a good choice to see the
before and after versions using our technique.

Our original process hollowing method, was immediately detected by the EDR.

Sophos Intercept X (EDR) detects typical process injection

Now, let us use our tool to wrap all our system call functions and run the test again.



20/21

Sophos Intercept X (EDR) does not detect LayeredSyscall wrapped process injection

As the screenshot above shows, the executable successfully injects the sample MessageBox
payload with no alerts from the EDR as well. (The alert shown is from the previous test).

Conclusion

This research and the tool were meant as a different take on how one could equip indirect
syscalls or other methods such as sleep obfuscations, which might require a legitimate stack
to work undetected. Since constructing our stack in a program can usually get corrupted if
not developed carefully, this tool allows the operating system to generate the necessary call
stack without much hassle, adding to the fact that any Windows API could potentially be
used. Also, this is not to say that the bypass method would work for every EDR out there
since it requires more thorough testing against many other EDRs and detection techniques
to call it a global bypass.

Link to the tool: https://github.com/WKL-Sec/LayeredSyscall

Potential Detections

As of now, detections against this technique would require one to check for maliciously
registered exception handlers within a particular program. Other detections could also
include flagging anomalous stack behavior by implementing a heuristic against known call
stack produced by Windows APIs.

https://github.com/WKL-Sec/LayeredSyscall


21/21

References

LinkedIn
X
WordPress

https://www.linkedin.com/company/white-knight-labs/
https://x.com/WKL_cyber
https://whiteknightlabs.com/blog/

