
1/16

Martin Friedrich May 31, 2005

Making WMI Queries In C++
codeproject.com/Articles/10539/Making-WMI-Queries-In-C

Abstract

When searching the internet for documentation about WMI consumer programming, most of the

documentation found is written for the C# programmer. Articles on using WMI from C++ are quite

scarce. This is even more astounding as MSDN offers a lot of C++ code snippets. However, these

snippets fail to constitute a real tutorial. This article deals with various aspects of how to implement

WMI consumers. During the course of the accompanying examples, emphasis is placed on how to

retrieve information from WMI by queries.

Despite its introductory nature, the article assumes the reader to be familiar with (D)COM

programming in a C++-context. Some knowledge about SQL is an advantage, but not a

requirement.

I Introduction

Motivation

Although the average user does not necessarily perceive it that way, operating systems are subject

to an evolution that is as amazing as that of computer hardware. During the Stone Age, when

dinosaurs ruled the earth, computers came as monstrous black boxes filled with wires and vacuum

tubes, hardwired for certain tasks they were designed to perform. Such were the early ancestors of

modern operating systems. In particular, they offered no support for administrative tasks. This was

partly because at that time, with an installed user base of five machines, there was no need for such

things.

Today, looking back from the preliminary endpoint of this evolution, things have changed

drastically. Modern computers have become omni-present, all-around tools of unprecedented

versatility. Their operating systems have become bigger and evermore sophisticated environments.

Most importantly, they are not the "specialized architecture" machines they once were. Each

machine can support an immense number of hardware and software configurations. Operating

Systems reflect this; on the Windows platform, for example, starting with Windows 95 Microsoft

introduced the registry as a centralized place to store configuration data. Other tools and

components for system management were added.

Because of networking capabilities being a key requirement nowadays, integrated operating system

support to administrate not only the local computer workstation at your desktop, but the

networking infrastructure as well, is of ever growing importance. With company networks easily

consisting of 100+ computers, remote administration capabilities are of particular advantage. WMI

(Windows Management Instrumentation) is the integrated solution to these needs.

https://www.codeproject.com/Articles/10539/Making-WMI-Queries-In-C

2/16

A prominent example of a WMI application is the built-in task monitor in Windows XP and

Windows 2000. It impressively demonstrates an important feature of WMI - there is an API for

WMI which can be called from your own applications. This means that the rather cumbersome way

of calling utility applications, e.g. PING.EXE, via the command line interpreter and parsing its

output for results is not needed anymore.

From the programmer's perspective, WMI is a DCOM based service that provides various methods

of synchronous and asynchronous access to many system management related data structures.

Although much of this information may be accessed by other means, it is the unifying API that can

make WMI quite benign to the programmer.

The remainder of this section will give a short overview of WMI and WQL, its customary SQL

derivate. The second section deals with synchronous queries on the local computer. Asynchronous

queries are the topic of section three. Finally, in the fourth section, a third kind of communication

with WMI, events, are discussed.

Overview of WMI and WQL

Windows Management Instrumentation or WMI provides status or performance data about

computers - possibly in networks that might even encompass whole enterprises - to applications. It

retrieves this data from various sources like the Win32 (resp. Win64) system, the registry or other,

custom defined sources. In particular, the actual location of data is hidden by the WMI-API in favor

of a more abstract view of the entirety of status or performance data.

Figure 1

WMI introduces the notion of a managed object. A managed object is some logical or physical

component on a computer that is managed by WMI. For example, a partition on a hard disk drive is

a managed object. Another example would be a SNMP service or a physical component like the

processor. On a more elevated level, say, for a network, router configuration could be managed by

WMI. Applications that obtain information about managed objects from WMI are called

consumers.

To a consumer, managed objects are represented by providers. A WMI provider is a COM

component, that maintains information from a managed object and relays it to the consumer via

WMI. Providers implement specific interfaces defined by CIM and are registered with WMI. By

3/16

implementing these interfaces, developers can write their own providers specific to their needs.

WMI comes with a number of predefined providers, which are called standard providers. The

examples throughout this article use the standard providers only. Figure 1 illustrates this;

interaction with providers is blurred by WMI, to the client both standard and custom providers are

hidden; data structures exposed by WMI do seem to have merged with the operating system.

Information about managed objects is exposed by WMI as instances of classes created by WMI

providers. In general, consumers do not access these instances directly, however. Instead,

consumers query WMI, which then relays the query to the appropriate provider. From the

requested subset of the managed object's properties, the provider builds a result set which is

returned to the consumer, again via WMI (Figure 2). Queries are specified in WQL, a subset of

ANSI SQL with a few extensions to fit WMI's needs. The most important difference between SQL

and WQL is that WQL supports read-only queries only.

Figure 2

For someone familiar with SQL, WQL can be understood quite intuitively: To query a property of

an instance, the property name (defined by the class of the instance) is inserted as a column name

into a SELECT statement with the class name as table name. For example:

SQL

SELECT Name FROM Win32_Processor

yields the CPU name. As with SQL, an asterisk is a wildcard, meaning all columns are to be

returned.

Depending on the mode of a query, its results are returned in result sets very similar to those of

ADO or OLEDB. There are three modes to execute a query: Synchronous, asynchronous and

semisynchronous. While the first two are exactly what their names suggest, the last one is of a

hybrid nature: The query returns immediately with a valid result set, but the set's contents, i.e. the

"real" result, are filled in later by WMI in an asynchronous manner. Selecting which query mode to

be used has implications on performance and security.

A more thorough discussion of WQL and its various aspects can be found at MSDN Library.

II Synchronous Queries

COM and WBEM Locator Setup

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/anch_wmi.asp

4/16

As with any process or thread calling COM based services, the first step in writing a WMI consumer

is to setup COM by calling CoInitializeEx . Usually - and absolutely necessary with

asynchronous queries - for WMI COINIT_MULTITHREADED is specified. This puts the calling thread

resp. process into a multi-threaded apartment. The exception are OLE clients - they are limited to

apartment-threaded execution. This introduces a problem with asynchronous queries that is

addressed in section II.

Unless an appropriate system-wide default security context is set in the registry, the next step is to

set it process-wide by calling CoInitializeSecurity ; as consumers only are considered here,

RPC_C_AUTHN_LEVEL_DEFAULT and RPC_C_IMPL_LEVEL_IMPERSONATE are the only parameters

to be set. Alternatively, or if CoInitializeSecurity has been called before with inappropriate

values, CoSetProxyBlanket resp. IClientSecurity::SetBlanket can be called for a per-

proxy setup.

After COM and COM-security have been set up, class IWbemLocator is used to access the WMI

service:

CComPtr< IWbemLocator > locator;

HRESULT hr = CoCreateInstance(CLSID_WbemAdministrativeLocator, NULL,

 CLSCTX_INPROC_SERVER, IID_IWbemLocator,

 reinterpret_cast< void*** >(&locator));

IWbemLocator::ConnectServer connects to the specified host for WMI. For the purposes of this

article the WMI service on the local machine is used.

IWbemLocator::ConnectServer is defined as follows:

HRESULT ConnectServer(const BSTR strNetworkResource, const BSTR strUser,

 const BSTR strPassword,const BSTR strLocale,

 LONG lSecurityFlags, const BSTR strAuthority,

 IWbemContext* pCtx, IWbemServices** ppNamespace)

The first parameter, strNetworkResource specifies the CIM namespace the consumer is to

connect to. Just like their C++ counterparts, CIM namespaces are used to disambiguate names in

CIM hierarchies and impose some lexical structure over them. They take the form

\\server\namespace1\namespace2... or //server/namespace1/namespace2.... server specifies

the machine on which the namespace resides. If a namespace is located on the local machine,

server can be omitted, i.e. namespace specifications takes the form namespace1/namespace2...

or namespace1\namespace2.... root\default specifies the default namespace, which is always

defined.

User and password are passed in the second and third parameters. For the local machine, they

must be set to NULL or the call will fail. strLocale gives the locale with NULL denoting the

current one. lSecurityFlags is normally set to WBEM_FLAG_USE_MAX_WAIT , which guarantees

5/16

the call to return within two minutes. This safeguards consumers against blocking indefinitely if the

targeted machine is down, for example.

In strAuthority , a Windows domain can be specified in which the user is to be authenticated.

Again, this must be NULL on local machines or when specifying the domain in the strUser

parameter. pCtx finally is set to NULL , except for rare cases when providers need an

IWbemContext instance.

The namespace for most of the pre-defined WMI structures reside in the root\CIMV2 namespace.

For the local machine, the connection is established by:

CComPtr< IWbemServices > service;

hr = locator->ConnectServer(L"root\\cimv2", NULL, NULL, NULL,

 WBEM_FLAG_CONNECT_USE_MAX_WAIT, NULL, NULL, &service);

When dealing with WMI, it is important to keep in mind that WMI APIs do expect wchar based

strings.

Simple Queries - Querying CPU information (Project CPUTest)

This subsection covers the most simple scenario of using WMI - local synchronous queries without

input parameters. As an example, the name of the local CPU and its clock frequency is to be found

out. This information is held by WMI in instances of class Win32_Processor . For details of the

various WMI classes - especially of which properties they own - see MSDN Library.

After successful service setup as described in the previous subsection, WMI can now be queried

about the desired information. As this section deals with synchronous queries,

IWbemServices::ExecQuery is called. Its prototype is:

HRESULT ExecQuery(const BSTR strQueryLanguage, const BSTR strQuery, LONG lFlags,

 IWbemContext* pCtx, IEnumWbemClassObject** ppEnum)

The first parameter, strQueryLanguage , specifies the query language and must always be set to

L"WQL" . The WQL statement for the query itself is passed in strQuery . lFlags specifies

various flags, the most important is WBEM_FLAG_FORWARD_ONLY , which tells WMI to generate an

enumeration as result set that can be traversed only once. Such enumerations are somewhat more

efficient. Later on, other flags will be discussed as they become relevant. pCtx has the same

meaning as before. The result set is returned as a pointer to an enumeration in ppEnum . For

example:

CComPtr< IEnumWbemClassObject > enumerator;

hr = service->ExecQuery(L"WQL", L"SELECT * FROM Win32_Processor",

 WBEM_FLAG_FORWARD_ONLY, NULL, &enumerator);

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/anch_wmi.asp

6/16

queries for all properties of instances of class Win32_Processor . The result set is returned in

enumerator .

The result-containing enumeration can be traversed by calling IEnumWbemClassObject::Next

repetitively. This method can return one or more IWbemClassObject -instances. As mentioned

before, these instances are not the actual WMI managed object instances. In that case that would be

instances of class Win32_Processor , they act instead as wrappers implementing access to the

properties requested - and only those - by the query (Figure 3). However, they can be identified

with each other and during the rest of the article this is done where it does no harm.

Figure 3

The number of instances returned in the enumeration is the number of instances of the class

specified in the query, i.e. the argument to the FROM -clause. Some WMI classes are instantiated

only once. Others may or may not be instantiated multiple times. Win32_Processor , for example,

is instantiated for each CPU installed on the WMI host; that is, on single processor machines there

is only one instance, on multi processor machines there may be more than one. For classes that are

instantiated more than once, instances can be distinguished by their properties. This is also true, if

a superclass name is the argument to the FROM -clause. How this is done will be discussed in the

next subsection.

With regard to this, an important note to make here is that when dealing with WMI,

IWbemClassObject is the only interface used by a consumer to access a managed object's data.

When writing WMI providers, things will look substantially different, of course.

IEnumWbemClassObject::Next has the prototype:

HRESULT Next(LONG lTimeout, ULONG uCount, IWbemClassObject** ppObjects,

 ULONG* puReturned)

lTimeout specifies a timeout in milliseconds to wait for results in the result set to become

available. If the timeout expires without results being available, WBEM_S_TIMEDOUT is returned.

WBEM_INFINITE means an indefinite timeout. For synchronous queries, this parameter is

effectively ignored as results - if any - are always available immediately. The next parameter,

uCount is the number of objects expected to be returned at maximum in ppObjects .

puReturned is the number of objects actually returned.

7/16

ULONG retcnt;

CComPtr< IWbemClassObject > processor;

hr = enumerator->Next(WBEM_INFINITE, 1L, &processor, &retcnt);

thus returns the first instance of Win32_Processor in processor .

Because only one instance of IWbemClassObject is extracted from enumerator in this example,

CComPtr<> can be used for convenience. When extracting more than one instance by a call to

IEnumWbemClassObject::Next , an array of plain IWbemClassObject* must be passed and

IUnknown::Release called later on each pointer in the array.

Properties of the instance of class Win32_Processor queried are returned in processor , which

will then be used to retrieve those of interest. This is done by calling IWbemClassObject::Get

with the name of the property in question supplied:

HRESULT Get(LPCWSTR wszName, LONG lFlags, VARIANT* pVal, CIMTYPE* pvtType,

 LONG* plFavor)

The property value is returned in a VARIANT union in pVal . The _variant_t wrapper class

can be used here. Along with the property's value, its CIM type and origin information can be

returned. For example, the CPU's name is retrieved like this:

_variant_t var_val;

hr = obj->Get(L"Name", 0, &var_val, NULL, NULL);

Passing Arguments To Queries (Project LocalPing)

Evidently, the rather primitive methods of querying WMI presented so far are simply not sufficient.

While there are just a small number of installed CPUs on a given machine (usually), instances of

other managed objects may reside in greater numbers on a machine, representing e.g.

administrative entities.

As soon as a computer is connected to any network, for example, information about networking

infrastructure must be processed. This may include anything from high-level network services and

tools to low-level protocol stack. WMI provides specific classes to access such information. One

example is the well-known tool PING.EXE. It is used to determine the reachability of a given IP

address on a network.

WMI provides built-in ping functionality by exposing the class Win32_PingStatus . Instead of

building a command line for PING.EXE and executing it via one of the exec library functions, one

can simply query WMI for an instance of Win32_PingStatus . Of course, in general one would

rather like to ping very specific IP addresses instead of the whole internet. Therefore, the IP

addresses to be pinged must be communicated to WMI by some means.

8/16

Target IP addresses are specified via the Address -property of class Win32_PingStatus . This is

done by extending the SELECT -statement of the query with a WHERE -clause. A simple WHERE -

clause takes one of these forms:

WHERE property operator constant

WHERE constant operator property

Lexically, this is very similar to SQL semantics. The main difference is that in SQL WHERE acts

more as a filter while in WQL WHERE additionally can specify input arguments. The following

snippet shows how to ping a given IP address, in this case the local loopback interface:

CComPtr< IEnumWbemClassObject > enumerator;

hr = service->ExecQuery(L"WQL", L"SELECT * FROM Win32_PingStatus " \

 L"WHERE Address=\"127.0.0.1\"",

 WBEM_FLAG_FORWARD_ONLY, NULL, &enumerator);

The result of the ping, i.e. whether the target IP can be reached or not, is returned in the

StatusCode property. A value of 0 indicates success. Except for the different WMI class to be

queried and the WHERE -clause, the associated source code in the "LocalPing" project works pretty

much the same as the sample code from the previous subsection and thus does not need to be

discussed further.

Multiple arguments to WMI can be specified by combining expressions with operators, like:

CComPtr< IEnumWbemClassObject > enumerator;

hr = service->ExecQuery(L"WQL", L"SELECT * FROM Win32_PingStatus " \

 L"WHERE (Address=\"127.0.0.1\") " \

 L"OR (Address=\"192.168.1.1\")",

 WBEM_FLAG_FORWARD_ONLY, NULL, &enumerator);

When retrieving the query's result, keep in mind that the enumeration returned now will contain

more than one instance. For details of WHERE -clauses, refer to MSDN or the VS2003 online

documentation.

Querying Multiple WMI Classes Simultaneously

Sometimes it is a good idea to execute two or more queries at once to achieve a better runtime

behavior. The intuitive approach - specifying multiple classes in the FROM -clause as one would do

in SQL - is not supported by WQL. The solution is to query for instances of base classes and then

restrict the result by using the classes' system properties. WMI system properties are pseudo

properties that exist for every class. Alongside other information, their purpose is to provide

reflective information. For example, one can retrieve the class name on an instance by accessing the

__CLASS property.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/querying_with_wql.asp

9/16

All classes of which instances are to be queried from within a single SELECT -statement must share

at least one common base class, direct or indirect, which is specified in the FROM -clause. This

implies that classes that do not share a base class cannot be queried this way. For example,

instances of classes Win32_Keyboard and Win32_PointingDevice can be queried like this:

SELECT * FROM CIM_UserDevice WHERE (__CLASS="Win32_PointingDevice")

 OR (__CLASS="Win32_Keyboard")

In general, the returned enumeration will be heterogeneous. Therefore care must be taken to use

the correct property names, etc. on each instance. Again, the _CLASS property can be used to

identify classes.

III Asynchronous and Remote Queries

Asynchronous Queries (Project AsyncPing)

So far, querying WMI has been done in a synchronous way. That is, a thread of a WMI consumer

launches a query and then waits for the result to be propagated back. In particular, while waiting,

the threads stop execution and resume only after query completion. While this clearly works and

fulfills its promises, it has a distinct disadvantage - WMI queries can take some time to complete;

time that might be spend by the querying thread by computing some other task, allowing for better

resource utilization.

WMI provides for asynchronous queries. When making asynchronous queries, the querying thread

does not wait for the query to complete. Instead, it provides class instances implementing special

COM interfaces, called sinks. A sink implements specific methods that are called by the WMI

provider on behalf of the consumer to process the results of the WMI query. This means that both

the WMI provider and the consumer do out-of-process execution when making asynchronous

queries. For the consumer, result computation is done out-of-process (just as it is with synchronous

queries). For the provider, result processing is done out-of-process, because it is the provider that

triggers processing, not the consumer anymore. This situation has some implications concerning

security, which will be discussed in the next subsection.

When making asynchronous queries, no resulting IWbemClassObject instances are returned

from the call immediately. Instead, an instance of class IWbemObjectSink is passed to

IWbemServices::ExecQueryAsync . This is the prototype for

IWbemServices::ExecQueryAsync :

HRESULT ExecQueryAsync(const BSTR strQueryLanguage,

 const BSTR strQuery, long lFlags,

 IWbemContext* pCtx,

 IWbemObjectSink* pResponseHandler)

10/16

The lFlags parameter is used to control certain details of how the query is to be executed. For

example, as with synchronous queries one can request bidirectional iterators to be returned. Also,

WMI can be instructed to report intermittent status of the ongoing call to the sink.

pResponseHandler is the sink instance that implements the actual result processing. API-wise,

these are the two sole differences in both approaches. The code for making the

Win32_PingStatus query asynchronously looks like this:

CComPtr< CPingSink > pPingSink = new CPingSink;

hr = service->ExecQueryAsync(L"WQL", L"SELECT * FROM Win32_PingStatus " \

 L"WHERE Address=\"127.0.0.1\"", 0, NULL,

 pPingSink);

CPingSink is the afore mentioned sink class. It implements the COM interface

IWbemObjectSink . This interface defines two methods (additionally to those of IUnknown , of

course):

HRESULT Indicate(long lObjectCount, IWbemClassObject** apObjArray);

HRESULT SetStatus(long lFlags, HRESULT hResult, BSTR strParam,

 IWbemClassObject* pObjectParam);

IWbemObjectSink::Indicate is called to process query results returned in apObjArray . The

number of results in this array is indicated by lObjectCount . Indicate may be called multiple

times by the provider, if necessary. WMI providers call SetStatus to indicate completion and/or

progress information to the consumer. If WBEM_FLAG_SEND_STATUS has been set on the lFlags

parameter of ExecQueryAsync , SetStatus may be called multiple times by the provider. If not,

it is called exactly once and indicates completion of the query. strParam and pObjectParam are

used for complex error information in the former case.

Making Asynchronous Queries More Secure (Project SecAsyncPing)

The decision to interact with WMI asynchronously has two major implications. While synchronous

queries are of plain, single-threaded nature, asynchronous queries - or rather the result processing

involved - are more of a multi-threaded type: the querying thread, i.e. the consumer, continues

after launching the query and some time later the WMI thread will execute the object sink's

callbacks. Code controlling the lifetime of the object sink must reflect this.

The second implication is a direct corollary of the first - as WMI executes the object sink's callbacks

in the process of the consumer, it might do this with a security context different from that of the

consumer. The WMI provider with lower privileges may thus be allowed to access higher privileged

consumers' data structures. To the consumer, it is a trusted component. Evidently, there are

situations when this is not acceptable. One solution, discussed in the next subsection, is to use

semisynchronous queries instead. The other one is to execute the object sink in an unsecured

apartment.

11/16

Executing the sink in an unsecured apartment means executing it in another, special process that

performs access checks. Depending on whether the consumer runs on Windows XP or Windows

Server 2003 platform, the details of this do slightly differ from each other. The basic idea is to wrap

around a stub object that is passed to IWbemServices::ExecQueryAsync instead of the sink

object. The stub object relays the provider's calls to the actual sink, whose execution is hosted by

UNSECAPP.EXE. Access checks are performed by the implementation of UNSECAPP.EXE in case

of Windows Server 2003 or by the sink itself inside the IWbemObjectSink::Indicate and

IWbemObjectSink::SetStatus methods. WMI setup and result processing by the sink object are

just the same as in the subsection before.

To facilitate this approach, the WMI consumer instantiates the class IUnsecureApartment by

calling CoCreateInstance :

CComPtr< IUnknown > pApartment;

HRESULT hr = CoCreateInstance(CLSID_UnsecuredApartment, NULL, CLSCTX_LOCAL_SERVER,

 IID_IUnsecuredApartment,

 reinterpret_cast< void** >(&pApartment));

Under Windows Server 2003, the returned instance is of class IWbemUnsecuredApartment ,

actually. Using this class instead of the also supported IUnsecuredApartment makes securing the

callback somewhat easier. Of course, consumers running under Windows Server 2003 can use

IUnsecuredApartment if they wish to. It should be noted here, that one does not instantiate

IWbemUnsecuredApartment directly. MSDN is dead wrong in this example.

The actual stub creation is done quite easily. When running under Windows XP, consumers call

IUnsecuredApartment::CreateObjectStub :

HRESULT CreateObjectStub(IUnknown* pObject, IUnknown** ppStub)

pObject is the sink object, ppStub is the newly created stub object. The method will return

E_POINTER , if pObject is NULL . As mentioned before, implementation of access checks is the

responsibility of the consumer. In the example project, this is class CPingSinkUnsecure .

Under Windows Server 2003, no access checks are done by UNSECAPP.EXE if the registry value

under

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\CIMOM\UnsecAppAccessControlDefault

is zero, the default value. Under pre-Windows Server 2003 platforms, this key is not available.

When creating the stub object, this behavior can be overridden. Stub creation is done by calling

CreateSinkObject on the IWbemUnsecuredApartment instance:

HRESULT CreateObjectSink(IUnknown* pSink, DOWRD dwFlags, LPCWSTR wszReserved,

 IWbemObjectSink** ppStub)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/setting_security_on_an_asynchronous_call.asp

12/16

Called with the original sink in pSink , the value of dwFlags controls the behavior of

UnsecApp.exe: WBEM_FLAG_UNSECAPP_DEFAULT_CHECK_ACCESS uses the registry mentioned

above, WBEM_FLAG_UNSECAPP_CHECK_ACCESS and WBEM_FLAG_UNSECAPP_DONT_CHECK do or do

not perform access checks, ignoring the registry value. For example, to force access checks, one

would call CreateSinkStub like this:

CComPtr< IWbemObjectSink > pStub;

CComPtr< IWbemUnsecuredApartment > aprt

 = pApartment->QueryInterface(IID_IWbemUnsecuredApartment,

 reinterpret_cast< void** >(&aprt));

HRESULT hr = aprt->CreateSinkStub(pSink, WBEM_FLAG_UNSECAPP_CHECK_ACCESS, NULL,

 &pStub);

Passing the stub instead of the sink object the consumer then makes the query just like before in

the previous subsection:

hr = service->ExecQueryAsync(L"WQL", L"SELECT StatusCode FROM Win32_PingStatus " \

 L"WHERE Address=\'127.0.0.1\'", 0, NULL, pStub);

Semisynchronous Queries (Project SemiSyncPing)

As set out in the previous subsection, asynchronous queries may cause some security concerns

because they assume the WMI provider to be a trusted component. There are scenarios when this is

not acceptable. Instead of falling back to the rather inefficient approach of synchronous queries,

WMI consumers can opt to make queries semisynchronously. This is an execution mode, which

combines the secure handling of synchronous query results with the multi-threaded nature of result

computation of asynchronous queries. At the same time, it eliminates the need to implement sink

classes; results are returned by IEnumWbemClassObject instances directly, just as with

synchronous queries.

The mechanism behind semisynchronous queries is therefore quite simple when compared to

synchronous ones: A synchronous query computes its results (possibly in another thread or

process) and returns only after completion with a prepared enumerator as its result, while a

semisynchronous one prepares the enumerator, marking its elements as pending and then returns

with the actual result computation continuing in another thread. In both cases, when calling

IEnumWbemClassObject:Next , this method inspects the state of the next element in the

enumeration, waiting for the specified time for the state of the element to become non-pending if

necessary.

The accompanying source code reflects these similarities between the synchronous and

semisynchronous mechanisms. Except for an additional WBEM_FLAG_RETURN_IMMEDIATELY flag in

the lFlags , for semisynchronous queries the ExecQuery call is the same. This flag instructs

WMI to handle the query semisynchronously and complete the ExecQuery call immediately with

WBEM_S_NO_ERROR as result code (provided there are no other error conditions pending):

13/16

CComPtr< IEnumWbemClassObject > enumerator;

hr = service->ExecQuery(L"WQL", L"SELECT * FROM Win32_PingStatus " \

 L"WHERE Address=\"127.0.0.1\"",

 WBEM_FLAG_FORWARD_ONLY | WBEM_FLAG_RETURN_IMMEDIATELY,

 NULL, &enumerator);

Upon successful completion of the call, the consumer now polls actively for results from the

enumeration returned in enumerator by calling IEnumWbemClassObject::Next with a given

timeout in the lTimeOut parameter:

while ((hr = enumerator->Next(1L, 1L, &ping, &retcnt)) == WBEM_S_TIMEDOUT);

With synchronous queries, this is set to WBEM_INFINITE , indicating the timeout never to expire.

WBEM_NO_WAIT means no timeout at all. If a result in the enumeration becomes available, the

Next call will return with WBEM_NO_ERROR result code. Timeout expiration is indicated by

returning WBEM_S_TIMEDOUT . If the result set is empty or its end has been reached,

WBEM_S_FALSE is returned.

If the enumeration contains more than one element and the consumer determines it does not want

to use all of them, calling Release on the enumeration will cause WMI to stop computing results

and eventually free the enumeration and its contents.

Semisynchronous queries are the recommended way to make non-synchronous queries. They are

easier to set up than asynchronous ones and they avoid the multi-threading and security issues

associated with them. However, there may be situations requiring the asynchronous approach. For

example, the requirement of consumers polling actively might be difficult to be implemented in

certain scenarios.

IV Event Notification Queries

So far WMI has been instrumentalized for inspection of simple data representing managed objects.

But there is more to come. WMI also allows for applications being notified if certain events are

triggered. Requesting such notifications is done by making an event notification query. This special

type of query differs from the ones seen before in two ways: First, event notification queries can be

made asynchronous or semisynchronous, but never synchronous. Secondly, the programming

model of event consumers is slightly different.

Permanent and Temporary Event Consumers

An application that is interested in receiving event notifications from WMI, is called an event

consumer. Event consumers come in two types - permanent and temporary event consumers. A

temporary event consumer is an application that wants event notifications for some span of time.

After this span of time has been elapsed, typically limited by the application's lifetime, the

application unregisters its query with WMI. In contrast, permanent event consumers will remain

active beyond the application's completion. Windows XP comes with some permanent event

consumers pre-installed, allowing to tie events to execution of command line scripts, for example.

14/16

These pre-installed consumers are known as standard event consumers. As both kinds of event

consumers do not differ very much from a programmatic point of view, for the rest of this article

permanent event consumers are left aside.

To register with WMI to receive event notification, an event consumer prepares a query in the form

of a WQL statement. Within the WQL query, the type of event is specified by the FROM -clause. As

usual, a base class can be used to specify multiple types. However, to constitute a valid query, the

specified class must be derived from the class __Event . MSDN lists the possible (base) classes.

Events relating to changes in the WMI data model are called intrinsic. Specifically, intrinsic events

are generated by WMI itself; they do not need to have a provider present. Intrinsic events are

limited to creation, modification and deletion of classes, instance and namespaces plus some of a

more administrative nature.

Events that do reflect changes outside the WMI data model are called extrinsic and must be derived

from __ExtrinsicEvent . They are only mentioned here for the sake of completeness.

WQL Queries for Events (Project DiskChange)

As said above, to request event notification, a consumer performs a WQL query with the event class

specified in the FROM -clause. Additionally to the queries seen before, the FROM -clause is followed

by a mandatory WITHIN -clause. This clause specifies a time interval in seconds, telling WMI how

often to update the result containing enumeration. This is the major difference to the query types

encountered in the previous sections - WMI keeps on sending event notifications to the consumer

(via the enumeration or sink passed in the query call) until told to stop. This is done by calling

Release on the enumeration or IWbemServices::CancelAsyncCall for the sink object for the

asynchronous case.

There are only a handful of intrinsic events and they are of a more generic nature - creation,

modification and deletion of classes or instances. Accordingly, they do not carry the pertinent

information directly. Instead, they have a property referencing the actual data. For example, event

classes referring to instance operations contain a property TargetInstance , which is inherited

from __InstanceOperationEvent , that designates the involved instance. This property is

checked in the WHERE -clause against the class one is interested in by use of the ISA operator.

Changes to logical disk drives - floppies, CD/DVD drives or hard disks - are indicated by

__InstanceModificationEvents with instances of Win32_LogicalDisk as TargetInstance

values. Requesting event notification of such changes can thus be done by the following WQL

statement:

SELECT * FROM __InstanceModificationEvent WITHIN 10

 WHERE TargetInstance ISA 'Win32_LogicalDisk'

Here WMI is instructed to check every 10 seconds for new modifications of all available

Win32_LogicalDisk instances and notify the event consumer accordingly. Such events are

triggered by insertion of a CD or DVD into a drive, for example. Of course, such rather generic

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/determining_the_type_of_event_to_receive.asp

15/16

notification requests can be made more event-specific by restricting them to special instances:

SELECT * FROM __InstanceModificationEvent WITHIN 10

 WHERE (TargetInstance ISA 'Win32_LogicalDisk')

 AND (TargetInstance.Name = "G:")

This query limits its results to the logical drive 'G:'.

The event notification query is made not by calling IWbemServices::ExecQuery but by calling

IWbemServices::ExecNotificationQuery or

IWbemServices::ExecNotificationQueryAsync in the asynchronous case. In both cases,

parameters are the same as with normal queries with the additional constraint that for

ExecNotificationQuery flags WBEM_FLAG_RETURN_IMMEDIATELY and

WBEM_FLAG_FORWARD_ONLY must be specified. If they are not, the call fails. As a consequence,

calling IEnumWbemClassObject::Reset has no effect on such enumerations.

Retrieving the resulting events is done just exactly as before with semisynchronous queries (event

notification queries are at least semisynchronous!). In addition, as long as Release is not called

on the enumeration, it may receive further events.

Closing Remarks

This article did concentrate on the WMI consumer's point of view. However, many aspects remain

uncovered, especially those of more direct interaction with managed objects did get their surface

barely scratched. Traversing file system or directory managing structures and how to employ them

to, e.g., copy files is an example. WMI does not only allow access to predefined data structures, it

also provides meta-data capabilities to extend the existing and define new ones. All this is closely

linked to the opposite role of WMI providers, and maybe another article from the WMI provider's

side would be appropriate.

Caveats

As always, seemingly excellent systems come up with drawbacks if they are given a closer look. This

holds for WMI, too, and indeed it can present some serious issues, which deserve a few words.

Firewalls and RPC

Being DCOM applications, WMI and WMI consumers will use RPC services when accessing objects

remotely. Nowadays, this will almost certainly raise issues with firewall configurations. As a rule of

thumb, TCP ports 135 and 445 will have to be exempted from the firewall's blocking list, together

with ports allocated by DCOM dynamically. Minimizing this number of ports can be quite tricky.

When going across subnets in large, heterogeneously administrated corporate networks, this will

prove a show stopper if sysops refuse to open the TCP 135 and 445 ports.

Remember to Remove All Event Notification Requests

16/16

When making event notification queries, remember to call IUnknown::Release on all

IEnumWbemClassObject instances created by these queries. If this is not done, for example by

exiting the program non-graciously via CTRL-C, WMI will continue to process these queries and

though not returning results anymore, this will hog the CPU in an astonishingly fast and efficient

way. See also KB327542 in the knowledge base.

WMI Queries Can Take Up Quite Some Time

Some types of queries can take a considerable amount of time to complete. Event notification

queries, for example, may take a few seconds before delivering the first events, even if short polling

intervals are specified. When designing an application, this should be addressed.

Asynchronous Queries and OLE

It seems that asynchronous queries do not like to be launched by apartment threaded threads, i.e.

threads calling CoInitializeEx with COINIT_APARTMENTTHREADED . They exhibit the symptom

that the ExecQueryAsync returns WBEM_S_NO_ERROR , but the sink is never called. The intuitive

workaround would be to use COINIT_MULTITHREADED instead or make a semisynchronous query.

Sometimes using COINIT_MULTITHREADED is not possible, however, because the application needs

to run in the single-threaded apartment. This is the case for OLE clients, for example. A solution to

this situation would be to separate all the WMI consumer stuff into its own thread and initialize

that one for free multi-threading.

Written By

Martin Friedrich

Web Developer

 Germany

Still lacking an university degree in computer science, I have 20 years of

experience in software development and implementation. Having expert

knowledge in object-oriented programming languages like C++, Java and C#

on Windows, LINUX and UNIX platforms, I participated in multiple research projects at the

University of Oldenburg. During these assignments, I was trusted with implementation of a

graphical editor for specification languages like CSP or Z and a prototypical tool for workflow data

distribution and analysis. I gained experiences in a widespread spectrum of CS and software

development topics, ranging from compiler construction across data base programming to MDA.

My research interests include questions of graphical user interface design and component-based

systems.

https://www.codeproject.com/Members/Martin-Friedrich

