
1/6

By N4kedTurtle October 12, 2020

In Process Execute Assembly and Mail Slots
teamhydra.blog/2020/10/12/in-process-execute-assembly-and-mail-slots

While working on our team’s internal implant I wanted to implement the ability to execute .Net
assemblies in memory. However, by far the most common way of doing this is spawning a
new process, executing the .Net assembly inside that process, and sending the response
over a pipe to the launching process. This is the way Cobalt Strike introduced in 2018 and
does provide a lot of flexibility. However, creating a new process feels expensive and I
wanted the option to execute the assembly from within my own process. I also wanted to
explore other avenues of writing and capturing the output from the assembly while still
remaining in memory. This post and the included PoC are the result of me prototyping how I
wanted to go about accomplishing these tasks.

LOADING A CLR

“The .NET Framework provides a run-time environment called the common language
runtime, which runs the code and provides services that make the development
process easier.”

https://docs.microsoft.com/en-us/dotnet/standard/clr

The Common Language Runtime is hosted within a native process and is where .Net
assemblies are loaded and run. Honestly, I’m not going to go that deeply in this post on what
each of these concepts are because it would be very long and frankly I would probably get it
wrong . I will provide MSDN links at each applicable stage and code so you can explore for
yourself. If you open up PowerShell and then use a tool like Process Hacker you can see
the loaded CLR, the app domains, and assemblies that are loaded within.

https://teamhydra.blog/2020/10/12/in-process-execute-assembly-and-mail-slots/
https://blog.cobaltstrike.com/2018/04/09/cobalt-strike-3-11-the-snake-that-eats-its-tail/
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://github.com/processhacker/processhacker

2/6

A CLR is not loaded by default into a process so if we want to execute a .Net assembly
within our process the first thing we need to do is load a CLR.

HRESULT hr;
ICLRMetaHost* pMetaHost = NULL;
ICLRRuntimeInfo* pRuntimeInfo = NULL;
BOOL bLoadable;
hr = CLRCreateInstance(CLSID_CLRMetaHost, IID_ICLRMetaHost,
(LPVOID*)&pMetaHost);
hr = pMetaHost->GetRuntime(L"v4.0.30319", IID_ICLRRuntimeInfo,
(LPVOID*)&pRuntimeInfo);
hr = pRuntimeInfo->IsLoadable(&bLoadable);
hr = pRuntimeInfo->GetInterface(CLSID_CorRuntimeHost, IID_ICorRuntimeHost,
(LPVOID*)&g_Runtime);
hr = g_Runtime->Start();

Now we have loaded a CLR into our process. We need an application domain into which our
assembly will be loaded.

APPLICATION DOMAINS

Application domains provide an isolation boundary for security, reliability, and
versioning, and for unloading assemblies. Application domains are typically created by
runtime hosts, which are responsible for bootstrapping the common language runtime
before an application is run.

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains

3/6

Application domains are a bit like a process within a process. They can have their own
threads, work similarly to processes in terms of isolation, and each can run with its own
security level. We are just going to use the default application domain for this blog as
creating your own app domain take a bit more code and explanation.

IUnknownPtr pUnk = NULL;
_AppDomainPtr pAppDomain = NULL;
hr = g_Runtime->GetDefaultDomain(&pUnk);
hr = pUnk->QueryInterface(IID_PPV_ARGS(&pAppDomain));

Now we have created and started the CLR and have a pointer to the default app domain
interface.

LOADING THE ASSEMBLY

Now that we have our app domain we can load the assembly.

bounds[0].cElements = (ULONG)assembly.size();
bounds[0].lLbound = 0;
psaBytes = SafeArrayCreate(VT_UI1, 1, bounds);
SafeArrayLock(psaBytes);
memcpy(psaBytes->pvData, assembly.data(), assembly.size());
SafeArrayUnlock(psaBytes);
hr = pAppDomain->Load_3(psaBytes, &pAssembly);

EXECUTING THE ASSEMBLY

Finally, we are able to execute the assembly! This is very easy to do if you want to execute a
specific exported function from a dll. However, we want to be able to execute common .Net
offensive testing tools like Rubeus, Seatbelt, etc. which are commonly used as exes so we
need to do a bit extra. (Credit to https://github.com/b4rtik/metasploit-execute-
assembly/blob/master/HostingCLR_inject/HostingCLR/HostingCLR.cpp for some of this).

https://github.com/b4rtik/metasploit-execute-assembly/blob/master/HostingCLR_inject/HostingCLR/HostingCLR.cpp

4/6

hr = pAssembly->get_EntryPoint(&pEntryPt);
if (args.empty())
{
vtPsa.parray = SafeArrayCreateVector(VT_BSTR, 0, 0);
}
else
{
w_ByteStr = (wchar_t*)malloc((sizeof(wchar_t) * args.size() + 1));
mbstowcs(w_ByteStr, (char*)args.data(), args.size() + 1);
szArglist = CommandLineToArgvW(w_ByteStr, &nArgs);
vtPsa.parray = SafeArrayCreateVector(VT_BSTR, 0, nArgs);
for (long i = 0; i < nArgs; i++)
{
BSTR strParam1 = SysAllocString(szArglist[i]);
SafeArrayPutElement(vtPsa.parray, &i, strParam1);
}
}
psaArguments = SafeArrayCreateVector(VT_VARIANT, 0, 1);
hr = SafeArrayPutElement(psaArguments, &rgIndices, &vtPsa);
hr = pEntryPt->Invoke_3(vtEmpty, psaArguments, &vReturnVal);

Now, if all goes well….

We successfully executed the assembly inside our process! Great! Only there is one big
problem. All of that output to the console, which is generally not what we want as offensive
security testers. Now, you could go through and modify every assembly you are going to use
to make sure they use a string and get the response from the previous code. However, that
is boring, so let’s try something different.

MAILSLOTS

Mailslots! I have been trying to figure out a decent way to use these for a while. They seem
so useful but they are very restrictive and there tends to be a better way to accomplish
whatever I have been doing.

5/6

A mailslot is a pseudofile that resides in memory, and you use standard file functions to
access it. The data in a mailslot message can be in any form, but cannot be larger than
424 bytes when sent between computers. Unlike disk files, mailslots are temporary.
When all handles to a mailslot are closed, the mailslot and all the data it contains are
deleted.

https://docs.microsoft.com/en-us/windows/win32/ipc/about-mailslots

To highlight the important stuff, mailslots are in memory, can be read over the network,
and all the data is deleted when all handles are closed . Also, you can broadcast a
message across the domain to all processes with the same mailslot name. BUT, you are
restricted to 424 bytes (400 bytes across domain). Yeah, that is a big but that not even Sir
Mix-a-lot likes.

Mailslots are really easy to implement for in process / interprocess comms. So easy that the
examples on MSDN can be copy / pasted into code at will.

Now all that is left to do is redirect the output from stdout / stderr into our shiny new mailslot
and we will be done.

g_OrigninalStdOut = GetStdHandle(STD_OUTPUT_HANDLE);
g_OrigninalStdErr = GetStdHandle(STD_ERROR_HANDLE);
HANDLE hFile = CreateFileA(SlotName, GENERIC_WRITE, FILE_SHARE_READ,
(LPSECURITY_ATTRIBUTES)NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
(HANDLE)NULL);
SetStdHandle(STD_OUTPUT_HANDLE, hFile);
SetStdHandle(STD_ERROR_HANDLE, hFile);
SetStdHandle(STD_OUTPUT_HANDLE, g_OrigninalStdOut);
SetStdHandle(STD_ERROR_HANDLE, g_OrigninalStdErr);
ReadSlot(outputString);
printf("Output from string = %s", outputString.c_str());

And finally.

https://docs.microsoft.com/en-us/windows/win32/ipc/about-mailslots
https://docs.microsoft.com/en-us/windows/win32/ipc/interprocess-communications
https://docs.microsoft.com/en-us/windows/win32/ipc/mailslot-operations

6/6

POC || GTFO

This code has everything from above but laid out better and with more safety checks. POC

OPERATIONAL THOUGHTS

So, how useful is all this? Obviously, execute assembly has been hugely impactful on post-
PowerShell-gets-detected-by-everything operations. The ability to do it in process is
especially useful if you are writing your own tooling and it is nice to have the option of not
creating a new process. Standard tradecraft still applies (bypass amsi, etw, etc) and you
need to be aware that you are often not running in a process that normally loads a CLR.

Mailslots? I’m not sure. In this case they are useful since it avoids more common ways of
doing this kind of thing like named pipes and the size restrictions don’t apply when using
them in process. I think it could be useful to use something like this to run .Net assemblies
(Seatbelt) on a target host and receive the output on your current host. I also think there is
possibly space for asymmetric comms channels (commands over mailslot, responses over a
more robust channel) or as a way to trigger persistence in certain situations. I would love to
know if others are using these for anything.

DEFENSIVE CONSIDERATIONS

A fair bit has been written about detecting execute assembly / .Net offensive tools. This is still
one where I feel like the adversaries have the advantage, but visibility is improving
constantly. Some resources:

 https://blog.f-secure.com/detecting-malicious-use-of-net-part-1/
 https://blog.f-secure.com/detecting-malicious-use-of-net-part-2/
 https://redcanary.com/blog/detecting-attacks-leveraging-the-net-framework/

 https://www.mdsec.co.uk/2020/06/detecting-and-advancing-in-memory-net-tradecraft/

https://github.com/N4kedTurtle/ExecuteAssembly_Mailslot
https://blog.f-secure.com/detecting-malicious-use-of-net-part-1/
https://blog.f-secure.com/detecting-malicious-use-of-net-part-2/
https://redcanary.com/blog/detecting-attacks-leveraging-the-net-framework/
https://www.mdsec.co.uk/2020/06/detecting-and-advancing-in-memory-net-tradecraft/

