
1/23

August 17, 2023

#NoFilter - Abusing Windows Filtering Platform for
Privilege Escalation

deepinstinct.com/blog/nofilter-abusing-windows-filtering-platform-for-privilege-escalation

AUGUST 17, 2023

Ron Ben YizhakSecurity Researcher

Intro

This blog is based on a session we presented at DEF CON 2023 on Sunday,
August 13, 2023, in Las Vegas: #NoFilter: Abusing Windows Filtering Platform
for Privilege Escalation

Privilege escalation is a common attack vector in the Windows OS. There are
multiple offensive tools in the wild that can execute code as “NT
AUTHORITY\SYSTEM” (Meterpreter, CobaltStrike, Potato tools), and they all
usually do so by duplicating tokens and manipulating services. This allows them
to perform attacks like LSASS Shtinkering.

This talk showcased an evasive and undetected privilege escalation technique
that abuses the Windows Filtering Platform (WFP). Additionally, the various
components of the Windows Filtering Platform were analyzed, including the
Basic Filtering Engine, the TCPIP driver, and the IPSec protocol, while focusing
on how to abuse them to extract valuable data. This blog digs into the specifics
of the session.

Access Tokens Background

An access token is a representation of the security context for processes and
threads. When a thread executes a privileged task or interacts with securable
objects, the access token serves to identify the user involved. It details the
identity of a process and it is composed of several things: the user that executed
it, the groups and log-on session it belongs to, and the privileges of the process.
When a thread tries to access an object like a device or a mutex the security
identifiers of the token are checked to see if the access is allowed.

There are two types of tokens: primary and impersonation. Primary tokens
describe the security context of the user account associated with the process.
Impersonation tokens give threads the ability to execute under a different
security context than owning process. They are used to represent the security
context of clients connecting to a server application.

https://www.deepinstinct.com/blog/nofilter-abusing-windows-filtering-platform-for-privilege-escalation
https://www.deepinstinct.com/author/ron-ben-yizhak
https://forum.defcon.org/node/245779
https://github.com/deepinstinct/Lsass-Shtinkering


2/23

The tokens of other processes can be accessed by calling DuplicateToken or
DuplicateHandle. Also, threads can gain high-privilege impersonation tokens by
manipulating RPC and COM servers running as “NT AUTHORITY\SYSTEM” and
then calling APIs like ImpersonateNamedPipeClient, CoImpersonateClient, or
RpcImpersonateClient.

RPC Mapper

The Deep Instinct security research team developed a tool for mapping RPC
methods. The purpose of the tool is to find ways to manipulate benign services to
perform malicious actions, such as code injection or file encryption.

All the RPC servers on the system were mapped and methods were marked if
the parameters that will be sent to the WinAPI are controlled by the RPC client.
The WinAPI could be called directly by the RPC method, or after several internal
calls. RPC methods were also marked if specific keywords appear in their name.
For example, the tool found that an RPC method from d3d10warp.dll leads to
ReadProcessMemory:



3/23

The results of this tool lead to BFE.DLL. It exposes 194 RPC methods and calls
various interesting WinAPI. The following PowerShell script demonstrates the
process of marking RPC methods:

Looking for interesting keywords in the methods revealed BfeRpcOpenToken.
This DLL is part of the Windows Filtering Platform.

Windows Filtering Platform

The Windows Filtering Platform is a native platform with a dedicated API. It
provides the ability to block or allow network traffic at any layer in the system
based on several fields, such as application, user, address, port, and more. It
processes network traffic by hooking the network stack and using a filtering
engine that coordinates network stack interactions. It allows the development of
security products like network monitoring tools, intrusion detection systems, and
host firewalls.

The platform consists of several components:

Callout drivers: User-defined drivers that can be loaded and integrated with the
platform to extend its’ capabilities. These drivers receive network data and can
process it in custom ways that the platform doesn't offer: deep inspection of
packets according to specific fields of a protocol, packet modification, or
performing custom logging.



4/23

Filter Engine: A component designed to filter network data by using multiple
layers from the OS network stack. The layers are set in user-mode and kernel-
mode. The user-mode component filters RPC and IPSec network data. The
kernel-mode engine filters the network and transport layers of the TCP/IP stack.
It also sends the network data to the callout drivers.

Base Filtering Engine (BFE): A user-mode service that is implemented in
BFE.DLL, that also exports management functions for user interaction. It
executes under svchost.exe and controls the WFP components. It accepts
commands to add or remove filters, offers data and statistics about the platform,
and forwards configuration settings to other components in the system.

The following schema is an overview of the platform:

https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-architecture-
overview

FWPUCLNT.DLL

FWPUCLNT.DLL exports documented functions that wrap RPC calls to
BFE.DLL.

FwpsOpenToken0 sends the engineHandle and the modifiedId to
BfeRpcOpenToken and receives a handle that it duplicates into the current
process with the permissions specified by the desiredAccess parameter. The
duplicated handle is returned to the caller in the accessToken parameter.

The documented parameters for FwpsOpenToken0 helped reverse engineering
BfeRpcOpenToken.



5/23

BFE.DLL

BfeRpcOpenToken calls BfeDriverTokenQuery and if there is no error the
process ID of the BFE service is returned to the RPC client along with the handle
to the token.

BfeDriverTokenQuery sends a device IO request to the device “\\.\WfpAle.” The
input buffer is the modifiedId value and the output buffer is the handle to the
token.

WfpAle

The device WfpAle is created by the driver tcpip.sys. This driver is a major
component of the Windows OS and it registers many devices that provide
various functionalities: IPSECDOSP, NXTIPSEC, eQoS.



6/23

The functions in tcpip.sys that can be invoked by device IO requests to WfpAle
are listed in the following table:

Control
Code Tcpip Function BFE Function

0x124008 WfpAleQueryTokenById BfeRpcOpenToken

0x124018 WfpAleProcessEndpointPropertiesQuery BfeRpcAleEndpointGetB

0x12401E WfpAleProcessEndpointEnumIoctl BfeRpcAleEndpointCrea

0x124020 sets tcpip!gMaxInboundSeqRanges
global variable

BfeRpcEngineSetOption

0x128000 WfpAleProcessTokenReference BfeDriverTokenAddRef

0x128004 WfpAleReleaseTokenInformationById BfeDriverTokenRelease

0x128010 WfpAleProcessExplicitCredentialQuery BfeRpcAleExplicitCreden

Tcpip.sys

The function the BFE service invokes is WfpAleQueryTokenById. It uses an
undocumented structure that was named TOKEN_ENTRY for the purposes of
this research.

It will try to find an entry based on the LUID it received, which is the modifiedId
value sent in the device IO request. If it is found DuplicateToken is called. The
desired access is hard coded to be TOKEN_DUPLICATE and the token type will
be TokenPrimary.

Invoking APIs in the kernel by sending a device IO request is useful in bypassing
user-mode hooks!



7/23

The first step in finding a token entry is calculating a hash that is based on the
LUID.

The final step in this query is iterating over a hash table and looking for an entry
that matches the correct values.

Token Query Recap



8/23

The query starts with the RPC client implemented in FWPUCLNT.DLL, which
invokes a method in the BFE service. The service sends a device IO request to
the tcpip.sys driver and after several internal functions a hash table is iterated.

gAleMasterHashTable

The table is used by 30+ functions in the tcpip driver. It stores various
undocumented structs named process information, peer information, connection
context, and more.

Token entries are added by the function
WfpAleInsertTokenInformationByUserTokenIdIfNeeded.



9/23

Debugging the boot process of the OS reveals that this function is never called,
which means that by default there are no token entries that can be retrieved.

Token Insertion

The insertion function is called by WfpAleProcessTokenReference, which can be
invoked by sending a device IO request with the control code 0x128000. The
function in the BFE service that sends this specific request is
BfeDriverTokenAddRef but it isn’t exposed directly by RPC. It is called under
certain conditions that aren’t simple to create. Triggering this device IO request
will insert a token to the table.

WfpAleProcessTokenReference receives a struct that contains a process id and
a handle to a token.

The interesting thing about this function is that any pid can be set by the caller.
One process can specify the ID of another process. This design can be easily
abused.

This function attaches the current thread to the address space of the process
specified by the PID parameter, duplicates a new token, and inserts a new entry
in the hash table. The LUID of the new token is returned in the output buffer of
the device IO request.



10/23

Accessing WfpAle

There is no RPC call to the BFE service that will insert a token into the hash
table. Sending the device IO request directly to the tcpip driver will solve this
problem, but the device WfpAle is created with a security descriptor that blocks
any process from gaining a handle to it, except for the BFE service.

The function that adds the security descriptor to the device is
WfpAllowBfeGenericAll and the token of the BFE service shows the unique
security identifier it contains to access the device.



11/23

The BFE service has an open handle to the device and this handle can be
duplicated for another process. That will give any process access to the device
WfpAle. This is possible because the security descriptor doesn’t block the
duplication of the handle, only creating a new one.

Duplicating the handle to the device requires debug privileges and a handle to
the BFE service with the permissions PROCESS_DUP_HANDLE and
PROCESS_QUERY_INFORMATION. These requirements shouldn’t trigger
security products since they aren’t suspicious. Tools like Process Hacker open
these types of handles to show the handle table of processes and the RPC client
implemented in FWPUCLNT.DLL also duplicates handles from the BFE service
to other processes.



12/23

Sending the device IO request directly also helps avoid detection by not
performing suspicious calls to DuplicateToken and DuplicateHandle. Security
products might be triggered if these APIs return a handle to a token that belongs
to “NT AUTHORITY\SYSTEM” to a process that has lower privileges.

When using the RPC client, the handle to the token needs to be duplicated from
the BFE service to the current process by calling DuplicateHandle. The only
permission this token will have is TOKEN_DUPLICATE, which isn’t sufficient to
launch a new process, so calling DuplicateToken is necessary to get a token with
enough permissions.

By sending the device IO request directly, the token will be sent to the current
process instead of the BFE service, and those API calls won’t be necessary.

Attack #1 - Duplicating tokens via WFP

The handle table of another process can be retrieved by calling
NtQueryInformationProcess. This table lists the tokens held by the process. The
handles to those tokens can be duplicated for another process to escalate to
SYSTEM.

This technique can be modified to perform the duplication in the kernel instead of
calling DuplicateHandle from user mode.

Device IO request is sent to call WfpAleProcessTokenReference. It will attach to
the address space of the service, duplicate the token of the service that belongs
to SYSTEM, and will store it in the hash table.

The LUID of the new token will be returned to the caller, and then
WfpAleQueryTokenById will be called with the LUID. Handle to a SYSTEM token
will be returned to the caller. The access of the handle is hard coded to be
TOKEN_DUPLICATE, but it can be duplicated to gain TOKEN_ALL_ACCESS
permissions.



13/23

This method was compared against the techniques from the overview. The token
of several services can be duplicated only by using this method, such as LSM,
Winmgmt, Schedule, and more.

Furthermore, the action of duplicating a handle to a SYSTEM token from a
service into a process running with lower permissions is suspicious and might be
detected, even by underperforming EDR solutions. This technique will evade this
detection by avoiding the call to DuplicateHandle.

Additional cross-references to the token insertion function reveal relation to
IPSec. Maybe using IPSec will insert a token?



14/23

Internet Protocol Security

Internet Protocol security is a set of protocols that ensure communication over
the network is done securely and privately by using cryptographic security
services. Integrating it at the Internet layer provides security for almost all TCP/IP
protocols. The authentication and encryption process protects against attacks
like network sniffers, data modification, identity spoofing, and denial of service.

IPSec sets up a secure connection between two machines before exchanging
data. This is done with the Internet Key Exchange (IKE) service. It exchanges
secret keys and other protection-related parameters. Authentication can be done
with Kerberos V5, certificates, or a pre-shared key.

Another authentication protocol, AuthIP, can be used instead of IKE. It is a newer
protocol that expands IKE with more authentication options. An IPSec policy can
be configured through the Microsoft Management Console (MMC) snap-in, or by
using the WFP API. The APIs give the developers the ability to set a more
specific network traffic filtering model.



15/23

Microsoft provides an example for programmatically configuring an IPSec policy
on the machine that uses a pre-shared key for authentication. While the policy is
installed, the token of each process that creates a connection that matches the
policy is inserted into the hash table stored in tcpip.sys.

According to the IPSec documentation, the reason this is done is because IPsec
impersonates the security context under which the socket is created.

The LUID of the token is unknown to the attacker. This value is used for the
modifiedId parameter for FwpsOpenToken0 and later as the index into the hash
table. This value ranges between 1 and 0x1000, so it can be brute forced.

Attack #2 – Trigger IPSec Connection

Forcing a service to initiate a connection that matches the policy will result in
inserting a SYSTEM token into the table. In this case, the Print Spooler service
will be abused to achieve this. It has a documented IDL file, which makes it
easier to find RPC methods that will make the service connect to a socket.

One such function is RpcOpenPrinter, which retrieves a handle for a printer by
name. When setting the name to "\\127.0.0.1" the service will connect to the
localhost. After this RPC call, multiple device IO requests to
WfpAleQueryTokenById can be made until it returns a SYSTEM token.

https://learn.microsoft.com/en-us/windows/win32/fwp/using-tunnel-mode
https://learn.microsoft.com/en-us/windows/win32/fwp/ipsec-configuration#what-is-authip
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-rprn/989357e2-446e-4872-bb38-1dce21e1313f


16/23

This is a stealthier technique than the previous one. Configuring an IPSec policy
is a legitimate action that can be done by network admins or to secure a
connection to a server. Also, the policy doesn’t alter the communication; no
service should be affected by it and EDR solutions monitoring network activity
will most likely ignore connections to the local host. Another advantage is that
there is no need to call WfpAleProcessTokenReference since the driver
automatically adds the token to the hash table.

Can more services be manipulated to gain other tokens?

Attack #3 – Manipulate User Service

Gaining the token of another user logged on to the machine can lead to lateral
movement in the domain. If the token can be added to the hash table a process
can be launched with this user's permissions.

RPC servers running as logged-on users (and not as “NT ATHORITY\SYSTEM”)
were searched for. The following script looks for processes running as the
domain admin then checking if they expose an RPC interface. This led to
SyncController.dll.



17/23

Once multiple sessions are active on the machine, every session will launch the
OneSyncSvc service with the user's permissions. This service loads
SyncController.dll, which registers the RPC interface 923c9623-db7f-4b34-9e6d-
e86580f8ca2a.

This interface has a method called
AccountsMgmtRpcDiscoverExchangeServerAuthType that receives a string in
the following format: user@127.0.0.1.

The steps to abuse this service include the following:

1. Configure an IPSec policy for connections to the localhost with pre-shared
key.

2. Enum services and find the pid of OneSyncSvc running in the target
session.

3. Find the handle to the ALPC port. Since the interface of SyncController is
exposed by several services, the RPC connection cannot be based on this
interface; rather the unique ALPC port opened by the targeted service
needs to be found.

4. Create a listener thread for 127.0.0.1:443. Normally, there is no service
listening on this port so another thread will be launched to listen to this
address.



18/23

5. Call the RPC method. It will cause the service to connect to the local host
with port 443. While the connection is active, the token of the user from the
other session is stored inside the table.

6. Bruteforce the LUID of the new token while OneSyncSvc is connected to
the socket.

7. Launch process with the new token.

OneSyncSvc and SyncController.dll were never abused by an offensive tool, and
the RPC call should not trigger security solutions.

Detection

These attacks were developed to be as stealthy as possible, but they can still be
detected by looking for the following events on the machine:

Configuring new IPSec policies that don’t match the known network
configuration.

RPC calls to Spooler / OneSyncSvc while an IPSec policy is active.

Brute force the LUID of a token via multiple calls to
WfpAleQueryTokenById.

Device IO request to the device WfpAle by processes other than the BFE
service.

The Windows Filtering Platform generates logs for events. Most logs are about
packets drops or failures during the key exchange process. It is possible to
generate logs about packets that were allowed to be sent. This must be set
explicitly — and it is not recommended — as it will generate a lot of noise. Even
when generating those logs it will be difficult to detect the attacks. The following
log is about a connection made during the attack:



19/23

This log shows that the spooler service was allowed to connect to port 135 on
the localhost. There is no mention of an IPSec policy or an RPC method that
invoked this connection. Querying the filter related to this log shows it just allows
localhost communication:

Further Research – tcpip.sys

The driver tcpip.sys creates several devices that expose several functionalities.
Sending device IO requests to them can uncover new attack surfaces. Some of
the functions are listed in the following table:

Device Control Code Tcpip Function

IPSECDOSP 0x124004 IdpProcessQueryStatsIoctl

0x124002 IdpProcessEnumStateIoctl



20/23

Device Control Code Tcpip Function

NXTIPSEC 0x128028 IPsecSetS2STunnelInterfaceHndlr

0x12801C IPSecNotifyStatusHndlr

0x128018 IPSecUpdateSaInfoHndlr

WFP 0x12803C IoctlKfdResetState

0x124050 IoctlKfdSetBfeEngineSd

0x128004 IoctlKfdAddIndex

Cross-references to the hash table in the tcpip driver reveal a lot about the
various operations it is used for and the data it manages in addition to tokens.
Some of the data can be valuable for attackers, for example: data labeled as
“Process Explicit Credentials.”

Further Research – Explicit Credentials

The tcpip driver stores something called “Process Explicit Credentials,” and
much like the tokens, it can be retrieved through RPC. Contrary to exported
function for token query the function for credentials query is undocumented
which makes it is even more obscure.



21/23

The BFE service performs an access check on the client when
BfeRpcAleExplicitCredentialsQuery is called. Processes running with admin
privileges receive an ERROR_ACCESS_DENIED. If the same call is sent from a
process running as SYSTEM, the BFE service allows it and sends a device IO
request to the tcpip driver.

This is another security mechanism that can be bypassed by duplicating the
handle to the device WfpAle. Sending the device IO request directly will skip the
access check in the BFE service.

The function that inserts explicit credentials is
WfpAleInsertCredentialInformation, but much like tokens, they aren't inserted into
the hash table in tcpip.sys without a special configuration. This configuration has
not been found yet.

The purpose of the data labeled as “process explicit credentials” is unclear at this
point, but cross references to the functions related to it might shed some light.

The function that inserts credentials to the table is called by functions named
WfpAleSetSecurity and WfpAleProcessSocketOption. Based on those names,
maybe WSASetSocketSecurity is somehow related?

https://learn.microsoft.com/en-us/windows/win32/api/ws2tcpip/nf-ws2tcpip-wsasetsocketsecurity


22/23

FwpsAleExplicitCredentialsQuery0 is called by the IKE service in the function
IkeGetExplicitCred. Based on cross-references to this function, credentials might
be inserted when using a Security Support Provider Interface (SSPI).

Conclusion



23/23

Single RPC call was reverse-engineered to achieve lateral movement and
privilege escalation.

Various components of the Windows Filtering Platform were analyzed.

Security mechanisms protecting the platform were bypassed.

Leads were shared to further abuse this platform.

Several attacks were developed, and their advantages include the following:

Avoid WinAPI that are monitored by security products.

Execute programs as SYSTEM and other logged on users (most tools only
elevate to SYSTEM)

Stealthier than ever before — barely any evidence and logs

Undetected by several security products

This research was reported to Microsoft Security Response Center. According to
Microsoft this behavior is by design.

GitHub repo: https://github.com/deepinstinct/NoFilter

https://github.com/deepinstinct/NoFilter

