
4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 1/15

splintercode

Bypassing UAC with SSPI Datagram Contexts
splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html

by splinter_code - 14 September 2023

Recently i had the opportunity to read through some of my old repos because i wanted to
reuse some code i used for a UIPI bypass in the past, aiming to adapt it to a new hidden
feature of the task manager for a sneaky and for-fun UAC bypass.

Luckily, i stumbled upon another UAC related project (a 2 years old project) in which i tried to
implement an idea to bypass UAC through some particular SSPI configurations, but i failed
miserably that time.

Upon re-reading the code, a light bulb came to my mind so i tried a different exploitation path
and it ended up with a new cool UAC bypass! So let’s jump straight to it 👇

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgHatC0V08ZrzJ89M8WsX2LRa6VB8h63QM9_2Nv_YEUthJjL1B2FUMMRjSJLUDfIJnvvlG3htwHNXGYrD4_id9CXc0vCYiknSl_mNjAwDTHCAtL1fbbGGQNjyonPDrpLgr8Cd8hMRZC9b5s4vimx0b2mLTLm8w63lHIoVOm9EWpeTaSuscXgfODPuikkVw/s544/spiderman.jpg
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgHatC0V08ZrzJ89M8WsX2LRa6VB8h63QM9_2Nv_YEUthJjL1B2FUMMRjSJLUDfIJnvvlG3htwHNXGYrD4_id9CXc0vCYiknSl_mNjAwDTHCAtL1fbbGGQNjyonPDrpLgr8Cd8hMRZC9b5s4vimx0b2mLTLm8w63lHIoVOm9EWpeTaSuscXgfODPuikkVw/s544/spiderman.jpg
https://download.microsoft.com/download/8/C/D/8CD015BB-081B-49C5-A506-9C9B570B8DD2/UIPI.pptx
https://www.tiraniddo.dev/2019/02/accessing-access-tokens-for-uiaccess.html
https://twitter.com/splinter_code/status/1695839278176108735
https://twitter.com/splinter_code/status/1695839278176108735
https://twitter.com/splinter_code/status/1696339966119268626
https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/security-support-provider-interface-architecture

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 2/15

UAC: User Account Control (formerly LUA - Limited User Account)

To provide some context, UAC (User Account Control) is an elevation mechanism within
Windows designed to trigger a consent prompt when an action requires administrative
privileges. This consent prompt is intended to enforce privilege separation by requiring
administrator approval.

While designed to add an extra layer of security against unauthorized OS changes, it has
been proven to be a full of holes design.
There are many known ways to bypass UAC and perform actions with elevated privileges
without any prompt or consent provided interactively by the user.

You can consult UACMe for a curated list and related source code of known UAC bypasses
(fixed and unfixed 🙈).

I bet you have encountered this screen at some point. Yep, that's the UAC consent prompt
for you:

In this post i’m not going to detail the internal working of UAC, but if you are interested in
knowing more there is already a lot of research about it. You can find some comprehensive
talks and blog posts in the References section.

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/
https://github.com/hfiref0x/UACME
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjnGkvjKRcsLSsoeadtfygLP4MXGMAY-LyWHx7ZQezx-RyWOHxd_hrts-KnzyT6hoaBPCOxLtip1FHcctu_dsaItjDzuIbFEq8eRJud9goA1cDcuqU6so8ZGvyu5WsFGilicAVw4ea2jRd7_mzVT8DvB_BYkahJyFavn7BDrIAbthuNEq80uU1h-Nfn_xI/s467/uac_prompt.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjnGkvjKRcsLSsoeadtfygLP4MXGMAY-LyWHx7ZQezx-RyWOHxd_hrts-KnzyT6hoaBPCOxLtip1FHcctu_dsaItjDzuIbFEq8eRJud9goA1cDcuqU6so8ZGvyu5WsFGilicAVw4ea2jRd7_mzVT8DvB_BYkahJyFavn7BDrIAbthuNEq80uU1h-Nfn_xI/s467/uac_prompt.png

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 3/15

An interesting behavior in NTLM authentications

In Windows exists the fantastic concept of “type your password once and authenticate
everywhere”. This is the same basic concept as any Single Sign-On system but integrated
directly into the operating system.

In order for this to work someone has to store your passwords and that’s where the LSA
comes into play. It provides a layer of abstraction for any related authentication happening
on your system.

Without going into the deep details, what you need to know is that the LSA (implemented in
lsass.exe) loads authentication packages DLLs by using configuration information stored
in the registry. Loading multiple authentication packages permits the LSA to support multiple
security protocols, e.g. NTLM, Kerberos and so on…

When you log on interactively, the LSA creates a new logon session, associates it with your
credentials, and creates a token for your process that references this newly created logon
session.
In this way, when your process tries to access a remote resource, let’s say \\SHARE-
SERVER\share1\file.txt, your process can invoke the SSPI functions to retrieve the security
buffers to send over the network wire and the authentication is abstracted from the
application logic without the needs of providing explicit credentials.
What happens under the hood is that when your application invokes the SSPI functions, it
communicates with lsass.exe, which in turn will inspect your process (or thread if
impersonating) token and will be able to associate your right credentials and derive the
proper authentication buffers that your process can use for the authentication.

This is an oversimplified explanation, but hopefully you got the point.

When network authentication takes place, UAC restrictions don't affect the generated
token.
There are 2 exceptions to this rule:

if you're authenticating to a remote machine using a shared local administrator
account (except built-in Administrator);

https://learn.microsoft.com/en-us/windows/win32/secauthn/lsa-authentication
https://learn.microsoft.com/en-us/windows/win32/secauthn/msv1-0-authentication-package
https://learn.microsoft.com/en-us/windows/win32/secauthn/kerberos-ssp-ap
https://learn.microsoft.com/en-us/windows/win32/secauthn/authentication-functions#context-management

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 4/15

if you are doing a loopback authentication without SPPI and using a local
administrator user. You need to know the password or at least the hash of the user.

Only in these cases UAC Remote restrictions kick in.
These restrictions will limit also the token generated by the network authentication on the
server end if LocalAccountTokenFilterPolicy is set to 0, which is the default configuration.

Instead, if you use a domain user which is also an administrator of the machine, UAC won’t
get in the way:

UAC Remote restrictions for domain users

The main mechanism that is preventing anyone from getting around UAC locally through
SSPI is Local Authentication.
To understand it, let’s take out of the equation the local authentication with Kerberos and
focus on NTLM. (NOTE: James Forshaw already demonstrated how UAC restrictions over
Kerberos can be bypassed locally in this blogpost)

If you are familiar with NTLM authentications, you can identify a local authentication by
observing these details in the messages exchange:

The server sets the “Negotiate Local Call” flag in the Challenge message (Type 2);

The “Reserved” field in the Challenge message is not 0 and contains a number
referencing the server context handle;

The generated Authenticate message (Type 3) by the client contains empty security
buffers;

When this occurs, LSASS is able to associate the calling process's actual token with the
server application's security context. As a result, any UAC restrictions on the client side
become visible to the server application.

https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/user-account-control-and-remote-restriction#how-uac-remote-restrictions-work
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhVpBv7_QKZ6-5POOGEf2SZ9bX2BewUMsyguCHH0PWw2rw7UEFjN6Z_X3p3gz8fsdumy9XJab1w57xi10r_Z5C1JHjtw8ZGB5wYkpLwH2hKzsDLQNFjo7kvKhWbgRknPRl2Yo3hyphenhyphenxxRBu_v2N8KJcJgG9s3jMmL4jR-GLwcDra-53YCqIlIDW_KUaMsWHY/s936/uac_remote_restrictions.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhVpBv7_QKZ6-5POOGEf2SZ9bX2BewUMsyguCHH0PWw2rw7UEFjN6Z_X3p3gz8fsdumy9XJab1w57xi10r_Z5C1JHjtw8ZGB5wYkpLwH2hKzsDLQNFjo7kvKhWbgRknPRl2Yo3hyphenhyphenxxRBu_v2N8KJcJgG9s3jMmL4jR-GLwcDra-53YCqIlIDW_KUaMsWHY/s936/uac_remote_restrictions.png
https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/user-account-control-and-remote-restriction#how-uac-remote-restrictions-work
https://twitter.com/tiraniddo
https://www.tiraniddo.dev/2022/03/bypassing-uac-in-most-complex-way.html
https://davenport.sourceforge.net/ntlm.html#localAuthentication

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 5/15

Ok, enough theory. Let’s see the differences in the token when doing a local vs remote
NTLM authentication through SSPI:

System Informer token views of local auth (left) vs remote auth (right)

The result is that the token returned from the local authentication has the UAC limitations, in
fact you can see the IL level is Medium and the Administrators SID is disabled.
Instead, the remote authentication occurred without UAC limitations and the resulting
elevated token is set in High IL.
One important difference here is in the logon type SID present in the token, on the filtered
token there is the INTERACTIVE SID while in the elevated token there is the NETWORK
SID.

So the 1 million $ question is: can we fake a network authentication locally with NTLM
through SSPI?

The unexpected bit flag

If we want to trick LSASS during local authentications, first we need to understand when and
how this decision takes place in the code.
Let’s reverse msv1_0.dll and search for the function which sets the flag 0x4000
(NTLMSSP_NEGOTIATE_LOCAL_CALL):

https://learn.microsoft.com/en-us/windows/win32/secauthn/sample-sspi-code
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEihS9XP2wucP3bxPzBwZxP04lsb6npCU_uEiqdqNLIH3QK9485xHdW3X1VEzwsyuzYONuom-VNQ8V3F_9odR4Lk3MabkVJ6SV0EVUAzGifIAUgvx_32BONjQu3qsCtdhuibSPEgl_P-qv8ry0Py78UgBbdpy3TaoihexMwiw0otjmbheiSMtbB5FpNMBHY/s1142/local_vs_remote_auth_token.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEihS9XP2wucP3bxPzBwZxP04lsb6npCU_uEiqdqNLIH3QK9485xHdW3X1VEzwsyuzYONuom-VNQ8V3F_9odR4Lk3MabkVJ6SV0EVUAzGifIAUgvx_32BONjQu3qsCtdhuibSPEgl_P-qv8ry0Py78UgBbdpy3TaoihexMwiw0otjmbheiSMtbB5FpNMBHY/s1142/local_vs_remote_auth_token.PNG
https://systeminformer.sourceforge.io/
https://learn.microsoft.com/en-us/windows/win32/secauthz/well-known-sids
https://learn.microsoft.com/en-us/windows/win32/secauthn/msv1-0-authentication-package

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 6/15

SsprHandleNegotiateMessage reversed code that sets the “Negotiate Local Call” flag

Without surprise we landed to the function SsprHandleNegotiateMessage. What this function
does is to handle the Negotiate message received by the client and generate the proper
Challenge. From the code perspective we land here in the first server call to
AcceptSecurityContext.
The logic of this code for detecting a local authentication is pretty straightforward: if the
domain name and machine name provided by the client in the Negotiate message matches
with the local machine name and domain, then this is a local authentication case.

But how we get into this part in the code? Let’s cross reference the if above that branch:

SsprHandleNegotiateMessage reversed code that checks Negotiate flags
So the function is checking the Negotiate flags supplied by the client and specifically checks
if NTLMSSP_NEGOTIATE_OEM_WORKSTATION_SUPPLIED and
NTLMSSP_NEGOTIATE_OEM_DOMAIN_SUPPLIED are set, which is always true if you
use SSPI in the latest Windows versions.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjxD4OIzq1ISZ5o0SxVYBWZDGL4Av6h4qhPWwrGhSFrWltXivcIc70gZFyn6z8PO6N3IC9vZ0Z5ZZ6DTjtGsa7_7xYp2qJkAXEPwlyllm1aWfiiLodOWCld5yh06ytCsyBj_0HP4gEIXncvNt5_CETGPvUEuX9yMlb5rWPbfG70i5zZyEk34iLdU_hM65I/s951/ntlm_reversed_code_1.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjxD4OIzq1ISZ5o0SxVYBWZDGL4Av6h4qhPWwrGhSFrWltXivcIc70gZFyn6z8PO6N3IC9vZ0Z5ZZ6DTjtGsa7_7xYp2qJkAXEPwlyllm1aWfiiLodOWCld5yh06ytCsyBj_0HP4gEIXncvNt5_CETGPvUEuX9yMlb5rWPbfG70i5zZyEk34iLdU_hM65I/s951/ntlm_reversed_code_1.PNG
https://learn.microsoft.com/en-us/windows/win32/secauthn/acceptsecuritycontext--ntlm
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgHQ32e4LULa-ef6wbVGzypF44czi0Bb5hoUHXX-Z5_jc6gi7DZLrcmooE-5mL5recJjSXRCjo3TNhh6YOlJFIBb6XeSE7nGPRKMrx3anWZqw3tCSptdhoa8N_eDokuE3m2GJe3lZgz9Qhss16_i709fs7llJ6HB63s2qbJ_KrPlAuJL66_DXQ1g1qbqYA/s1169/ntlm_reversed_code_2.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgHQ32e4LULa-ef6wbVGzypF44czi0Bb5hoUHXX-Z5_jc6gi7DZLrcmooE-5mL5recJjSXRCjo3TNhh6YOlJFIBb6XeSE7nGPRKMrx3anWZqw3tCSptdhoa8N_eDokuE3m2GJe3lZgz9Qhss16_i709fs7llJ6HB63s2qbJ_KrPlAuJL66_DXQ1g1qbqYA/s1169/ntlm_reversed_code_2.PNG

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 7/15

However, what in the hell is the other checked flag NTLMSSP_NEGOTIATE_DATAGRAM ?
Googling around brought me to Datagram Contexts.
I still haven’t understood what is the intended behavior usage for this feature, but all i needed
to know is that i can set this “mode” from the client by using the flag ISC_REQ_DATAGRAM
in the first InitializeSecurityContext client call. Hopefully, by doing so, i would have forced the
intended network auth i was aiming for.

The only thing to take into consideration is that mode is using connection-less context
semantics and could be problematic to synchronize with external services. But… for our
case we can run the server and client within the same process and we should be good.
Even if it sounds very weird, it’s what we need… In the end we just need to trick LSASS to
forge the token for us.

Let’s sort out all of the code and check how the generated security buffers appears while
using Datagram Contexts:

https://learn.microsoft.com/en-us/windows/win32/secauthn/datagram-contexts
https://learn.microsoft.com/en-us/windows/win32/secauthn/initializesecuritycontext--ntlm

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 8/15

NTLM message exchanges with Datagram Contexts

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEieZA91Ajew-PrKA1XDJb8G8N_vWf_H1-FPoGzACqBLgZtzd5MHgbmO_YtF2W3Gi-STZ5K2zlVmisZQ4IptLmJvx8nU1zqB_zsASCoaNar_blrL7aYNg9AMx1fCjIE1PvHrsnggMdxeWKr63zRh0FsH5PLhLCX3zazgZq69Unr-i-LY99xcq-zHxBr9zXg/s885/datagram_ntlm_packets.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEieZA91Ajew-PrKA1XDJb8G8N_vWf_H1-FPoGzACqBLgZtzd5MHgbmO_YtF2W3Gi-STZ5K2zlVmisZQ4IptLmJvx8nU1zqB_zsASCoaNar_blrL7aYNg9AMx1fCjIE1PvHrsnggMdxeWKr63zRh0FsH5PLhLCX3zazgZq69Unr-i-LY99xcq-zHxBr9zXg/s885/datagram_ntlm_packets.png

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 9/15

Observing the security buffers exchanged, we can see that the “Negotiate Local Flag” is not
set and that the “Reserved” bytes are 0, so no context handle has been passed by the
server. Moreover, the client also sent the NTLMv2 Response in the Authenticate message. It
definitely looks like the client and server are not negotiating a local authentication.
Note that the Negotiate message (Type 1) generated in Datagram-style authentication is
empty and this is one of the significant differences compared to “normal” connection-oriented
authentications.

Let’s inspect the token generated by this authentication and specifically if it contains the
magic NETWORK SID logon type:

TokenViewer view of the generated token from Datagram-style authentication
The good news is that the NETWORK SID has been added in our token, so mission
accomplished.

The very bad news is that somehow the token has been filtered by UAC. As you can see, the
IL of the token is Medium and is not even Elevated.
My assumption that Local Authentication is the only mechanism to filter tokens is wrong.
Probably, LSASS has additional checks in place, which i don’t plan to discover.

GAME OVER.

https://davenport.sourceforge.net/ntlm.html#datagramAuthentication
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhpRrs4e95ZQU3nHbdUDAPSVt42nZ4-LICHrs050ESm8H2ngAPadFENpbHGltJ_oM0Ec_61D3HR8VI8oookZawUhkToc_Z2g89dTSuwDpzkw1HA0DlGSwDBxKAmA-dkfskAs1G4nA-YI79ycDo1-mfTTYPTuYVD7lsGUM_wyI0swRQfYItIZlqjpoYtybE/s944/network_token_datagram.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhpRrs4e95ZQU3nHbdUDAPSVt42nZ4-LICHrs050ESm8H2ngAPadFENpbHGltJ_oM0Ec_61D3HR8VI8oookZawUhkToc_Z2g89dTSuwDpzkw1HA0DlGSwDBxKAmA-dkfskAs1G4nA-YI79ycDo1-mfTTYPTuYVD7lsGUM_wyI0swRQfYItIZlqjpoYtybE/s944/network_token_datagram.png
https://github.com/googleprojectzero/sandbox-attacksurface-analysis-tools/

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 10/15

Sharing a logon session a little too much, part 2

After almost 2 years from my last defeat against UAC, i decided to look again into this
abandoned idea.

This time instead, i recalled the blog post “Sharing a Logon Session a Little Too Much” by
James Forshaw and it inspired me for a different exploitation path.

What stands out from his blogpost is that when you do a loopback network authentication
you can exploit a behavior of AcquireCredentialsHandle when used in network redirectors in
which would result in LSASS using the first token created in the logon session rather than
the caller’s token.

How that would apply in our case?

When we complete a Datagram-style authentication, LSASS creates a new logon session
and creates the elevated token. Then, starting from the elevated token will create a new
filtered token (LUA token) and the two are linked. The LUA token is the one actually
associated with the security context “sent” to the server.

LUA Token vs. Elevated Token properties differences

https://www.tiraniddo.dev/2020/04/sharing-logon-session-little-too-much.html
https://twitter.com/tiraniddo
https://learn.microsoft.com/en-us/windows/win32/secauthn/acquirecredentialshandle--general
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-token_linked_token
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgaH8NqrnHYQS8IhrDuyHv4PCAOXbL_RNtbNNvVLa5qpqP_3soXE7EUrQJzyZn0tLhcN4bt1F49O70DdUB-Qc9nOQfmgVlUQK7d4sh-qfZTj6zN1p9fzMtm810Yyv4vt0LMISgN0ObJKpzZ7LxgIjN9rMc13wQHqLm2j0YKM7Q2eXFc9QqwMZ1BMI_TeZE/s942/lua_vs_elevated_token.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgaH8NqrnHYQS8IhrDuyHv4PCAOXbL_RNtbNNvVLa5qpqP_3soXE7EUrQJzyZn0tLhcN4bt1F49O70DdUB-Qc9nOQfmgVlUQK7d4sh-qfZTj6zN1p9fzMtm810Yyv4vt0LMISgN0ObJKpzZ7LxgIjN9rMc13wQHqLm2j0YKM7Q2eXFc9QqwMZ1BMI_TeZE/s942/lua_vs_elevated_token.png

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 11/15

In the tokens generated in this way, the Logon Session ID (or Authentication ID from the
token perspective) are equals and the Token ID values suggest that the Elevated Token is
created before and likely is the first token created in that logon session. So according to this
“token confusion” bug in LSASS, the server would see our call as it was originating from our
elevated token rather than our impersonated limited token.

To exploit this bug, we first need to check if we are able to impersonate the generated LUA
token.
According to Microsoft documentation of ImpersonateLoggedOnUser function we should be
fine in impersonating a token as long as “the authenticated identity is same as the caller”,
which is our case. However, it’s not entirely true. There are more conditions in place in the
kernel function SeTokenCanImpersonate that is performing the checks:

SeTokenCanImpersonate flow for impersonation decisions, from “Taking Kerberos to The
Next Level”
Comparing the token properties with our process’s token running under UAC limitations, all
conditions appear to be met.

Cool! So let’s impersonate the token from the Datagram-style authentication and try to write
to a named pipe over the loopback interface, e.g. \\127.0.0.1.\pipe\dummypipe

https://learn.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-impersonateloggedonuser
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi0lw5GsKO3XrCazNqS_sKU9fPM8bMjbEd8RAXjSAmyU7sW_KkLo48BtRV3VJkj5LH_eoN94-49yjl_l5x7VRg0XgB3_erd48M54ej-AiPTIhXRsrfJ30PPXcA-eCbWm5UfKPrY4RdMTcw8letZgSRlVMHcwJjQ1-E072h5TCjNF32KYh7gyohR6Wvutcg/s1573/setokencanimpersonate.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi0lw5GsKO3XrCazNqS_sKU9fPM8bMjbEd8RAXjSAmyU7sW_KkLo48BtRV3VJkj5LH_eoN94-49yjl_l5x7VRg0XgB3_erd48M54ej-AiPTIhXRsrfJ30PPXcA-eCbWm5UfKPrY4RdMTcw8letZgSRlVMHcwJjQ1-E072h5TCjNF32KYh7gyohR6Wvutcg/s1573/setokencanimpersonate.PNG
https://github.com/tyranid/blackhat-usa-2022-demos/blob/main/slides.pdf
https://github.com/tyranid/blackhat-usa-2022-demos/blob/main/slides.pdf

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 12/15

Pipe client thread vs. Pipe server thread tokens

Aaand BAM! We are able to authenticate over the loopback interface with our elevated
token even if we are impersonating the filtered token! 🎉

Of course the pipe server is running with elevated privileges, otherwise the High IL token
would have been downgraded to an Identification token.
But what about using this token for authenticating to an already running privileged service?
Like the file-sharing service over SMB? It should be as easy as invoking CreateFile using an
UNC path, like \\127.0.0.1\C$\Windows\bypassuac.txt

It worked!

So at this point we have a privileged file write primitive that can be combined with any
known DLL Hijacking technique to achieve EoP, such as using an XPS Print Job or NetMan
DLL Hijacking.

Privileged File Write is good but Code Execution is better :D

If you remember, i previously showed you that i’m able to authenticate even to a named
pipe with the elevated token.
Having privileged access to named pipes means we have access to all of the RPC servers

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgGS-SvoTJqjer3PQ_e0eCpwuisrjw9YsKqruYrbh4d9bt-vpUVgv_isOgV3rnL5CHVdCKZEgoeEtJ-i2TW6sbaDmRZMLiI9dMAqf5kXt05NraA76BrFfcfpgFRNd73qtS1inQcFCDcqdNzPN1upfvr7NNzJ8nX3nYdHtidvpusdQR3MpJPD177DRK0U78/s942/pipe_client_vs_server_token.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgGS-SvoTJqjer3PQ_e0eCpwuisrjw9YsKqruYrbh4d9bt-vpUVgv_isOgV3rnL5CHVdCKZEgoeEtJ-i2TW6sbaDmRZMLiI9dMAqf5kXt05NraA76BrFfcfpgFRNd73qtS1inQcFCDcqdNzPN1upfvr7NNzJ8nX3nYdHtidvpusdQR3MpJPD177DRK0U78/s942/pipe_client_vs_server_token.png
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://decoder.cloud/2019/11/13/from-arbitrary-file-overwrite-to-system/
https://decoder.cloud/2019/11/13/from-arbitrary-file-overwrite-to-system/
https://itm4n.github.io/windows-server-netman-dll-hijacking/
https://itm4n.github.io/windows-server-netman-dll-hijacking/
https://itm4n.github.io/windows-server-netman-dll-hijacking/

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 13/15

running with ncacn_np configuration, which are a lot!
So, why we don’t leverage this bug/feature to achieve code execution instead of our current
privileged file write? We have a lot of juicy candidates like Remote SCM, Remote Registry,
Remote Task Scheduler and so on…

However, if we try to authenticate to the Remote Registry through a RegConnectRegistryW
call, it will fail to open handles to privileged regkeys.
Let’s inspect the behavior:

 WinDbg details of AcquireCredentialsHandle call from RegConnectRegistryW
What it turns out is that the RPC runtime library (RPCRT4.dll) uses his own implementation
for the authentication. As we can observe, the pvLogonId parameter for
AcquireCredentialsHandleW is set to 0 which wouldn’t allow to trigger the bug in LSASS and
would use the proper limited token for the auth.
Now let’s see the difference when authenticating to the loopback interface with the
CreateFileW function:

WinDbg details of AcquireCredentialsHandle call from CreateFileW
The first difference we see here is that the authentication is implemented in the kernel by the
SMB redirector driver mrxsmb20.sys.

More important, the pvLogonId parameter for AcquireCredentialsHandleW is set to the logon
session associated with our user, which is what would fool lsass in using the elevated
token from that logon session.
According to the documentation, in order to specify the pvLogonId you need to have the
SeTcbPrivilege, which is not a problem in this case due to the fact that the code is running
with kernel privileges.

https://learn.microsoft.com/en-us/windows/win32/midl/ncacn-np
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-scmr/705b624a-13de-43cc-b8a2-99573da3635f
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-rrp/0fa3191d-bb79-490a-81bd-54c2601b7a78
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-tsch/d1058a28-7e02-4948-8b8d-4a347fa64931
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regconnectregistryw
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiq0w2Box-OhYdkKKYeMZimKSLQ92kDn1-3n12A1i8yygiU4RZar0uTtC81FHUARvhTjpuxKVzEhZKa8p9380hWmOu8w7Mn8MyiAfZdo4_DQlysHYGJuDttv7TbvxxEPBMZ-HU0urOfh9AM28Hk8xsdSGACnFZf6TnbxJ9BeLCCbnvNBp6TSYOPiS_u3fU/s1025/windbg_details_2.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiq0w2Box-OhYdkKKYeMZimKSLQ92kDn1-3n12A1i8yygiU4RZar0uTtC81FHUARvhTjpuxKVzEhZKa8p9380hWmOu8w7Mn8MyiAfZdo4_DQlysHYGJuDttv7TbvxxEPBMZ-HU0urOfh9AM28Hk8xsdSGACnFZf6TnbxJ9BeLCCbnvNBp6TSYOPiS_u3fU/s1025/windbg_details_2.png
https://learn.microsoft.com/en-us/windows/win32/secauthn/acquirecredentialshandle--general
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/secauthn/acquirecredentialshandle--general

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 14/15

This means, unfortunately, we can’t use the RPC runtime library to authenticate to named
pipes associated with RPC services if we want to exploit this bug.
However, no one could prohibit us to use our own custom RPC client implementation that
leverages the CreateFileW call for authenticating to the RPC service over SMB. But this
would require some hard work and i’m too lazy for that.

But this time luck seems to have been turned to my side and i found out @x86matthew
already did this for the service control manager RPC interface in CreateSvcRpc!
The only change we need to do is to force the usage of SMB instead of ALPC, that
technically translates in changing the pipe path from \\.\pipe\ntsvcs to \\127.0.0.1\pipe\ntsvcs

Let’s see the full chain in action 😎

PoC source code can be found at → https://github.com/antonioCoco/SspiUacBypass

Conclusion

A couple of years ago, i put this project between the many things i failed, thinking i hit a wall.
Now i see the way was always there... I just needed to look at it differently or with a different
perspective. It turned out to be a new cool way to get around UAC.

A big shout-out to James Forshaw and @x86matthew whose research provided invaluable
insights and my friend @decoder_it for the proofread!

That's all folks, see you next time 👋

https://twitter.com/x86matthew
https://www.x86matthew.com/view_post?id=create_svc_rpc
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj6MF93q_k8Og_DqTsbZ86eNwI11YiD-c71SR_CTFX-G8CDuwIq1vpSFz8Z7__zq9O2jLJdOGMw8opy7R2uUK7TWsllR_3DMBy0w44esnwo6kZozFF5l4d0WmTm32cDds_pCD9ZTBoOVR-f0XP89q_2o_y3S1q14KemJuKl4nrtBV6lOoc9KW5yP78LX1E/s1543/demo.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj6MF93q_k8Og_DqTsbZ86eNwI11YiD-c71SR_CTFX-G8CDuwIq1vpSFz8Z7__zq9O2jLJdOGMw8opy7R2uUK7TWsllR_3DMBy0w44esnwo6kZozFF5l4d0WmTm32cDds_pCD9ZTBoOVR-f0XP89q_2o_y3S1q14KemJuKl4nrtBV6lOoc9KW5yP78LX1E/s1543/demo.PNG
https://github.com/antonioCoco/SspiUacBypass
https://twitter.com/tiraniddo
https://twitter.com/x86matthew
https://twitter.com/decoder_it
https://twitter.com/decoder_it

4/9/24, 1:38 AM Bypassing UAC with SSPI Datagram Contexts

https://splintercod3.blogspot.com/p/bypassing-uac-with-sspi-datagram.html 15/15

References

ZeroNights 2017 James Forshaw Abusing Access Tokens for UAC Bypasses

Reading Your Way Around UAC (Part 1)

Reading Your Way Around UAC (Part 2)

Reading Your Way Around UAC (Part 3)

Farewell to the Token Stealing UAC Bypass

Accessing Access Tokens for UIAccess

Bypassing UAC in the most Complex Way Possible!

Sharing a Logon Session a Little Too Much

CreateSvcRpc - A custom RPC client to execute programs as the SYSTEM user

https://youtu.be/G5HjD4nMbUc
https://www.tiraniddo.dev/2017/05/reading-your-way-around-uac-part-1.html
https://www.tiraniddo.dev/2017/05/reading-your-way-around-uac-part-2.html
https://www.tiraniddo.dev/2017/05/reading-your-way-around-uac-part-3.html
https://www.tiraniddo.dev/2018/10/farewell-to-token-stealing-uac-bypass.html
https://www.tiraniddo.dev/2019/02/accessing-access-tokens-for-uiaccess.html
https://www.tiraniddo.dev/2022/03/bypassing-uac-in-most-complex-way.html
https://www.tiraniddo.dev/2020/04/sharing-logon-session-little-too-much.html
https://www.x86matthew.com/view_post?id=create_svc_rpc

