
1/13

By Yarden Shafir & Alex Ionescu

DKOM – Now with Symbolic Links!
windows-internals.com/dkom-now-with-symbolic-links

You might think “What can ANYONE still say about kernel callbacks? We’ve already seen

every callback possible – there are process creation callbacks, object type callbacks, image

load notifications, callback objects, object type callbacks, host extensions… there can’t be any

more kinds of callbacks. Right? Right…?”

Nope.

In Microsoft’s never-ending attempt to close one door for kernel hooking and open two more,

Windows 10 Creators Update (RS2) added a new type of callback – this time for symbolic

links.

Notice these recent changes to the OBJECT_SYMBOLIC_LINK structure:

typedef struct _OBJECT_SYMBOLIC_LINK
 {

 LARGE_INTEGER CreationTime;
 + union

 + {
 UNICODE_STRING LinkTarget;

 + struct
 + {

 + POBJECT_SYMBOLIC_LINK_CALLBACK Callback;
 + PVOID CallbackContext;

 + };

+ }
 ULONG DosDeviceDriveIndex;

 ULONG Flags;
 ULONG AccessMask;

 } OBJECT_SYMBOLIC_LINK, *POBJECT_SYMBOLIC_LINK;

What used to be a Unicode String containing the target of the symbolic link is now a union

that contains one of our favorite keywords to see when looking at the kernel – callback.

These callbacks were added in RS2 to support Memory Partitions, which are a new type of

object used to segment physical address ranges into their own instance of the memory

manager. Without going into too many details, the key point is that some of the event objects

in \KernelObjects , such as LowMemoryCondition are no longer global – but rather refer

to the specific conditions in the Memory Partition of the current caller. However, in order not

to break compatibility, their naming and location could not be changed (such as

\KernelObjects\Partition2\

https://windows-internals.com/dkom-now-with-symbolic-links/
https://ntdiff.github.io./#versionLeft=Win10_1607_RS1%2Fx64%2FSystem32&filenameLeft=ntoskrnl.exe&typeLeft=Standalone%2F_OBJECT_SYMBOLIC_LINK&versionRight=Win10_1703_RS2%2Fx64%2FSystem32&filenameRight=ntoskrnl.exe&typeRight=Standalone%2F_OBJECT_SYMBOLIC_LINK

2/13

LowMemoryCondition). As a result, they were turned into symbolic links attached to a

dynamic callback, which will look at the current Memory Partition in EPROCESS and return

the appropriate KEVENT Object for the caller’s partition.

Now, whenever bit 5 in the symbolic link flags is set (Flags &

OBJECT_SYMBOLIC_LINK_USE_CALLBACK), the LinkTarget will not be treated as a string,

but instead will be treated as a function with this prototype:

typedef
 NTSTATUS

 (POBJECT_SYMBOLIC_LINK_CALLBACK*) (
 In POBJECT_SYMBOLIC_LINK Symlink,

 In PVOID SymlinkContext,
 Out PUNICODE_STRING SymlinkPath,

 Outptr PVOID* Object
);

This function will be called whenever the symbolic link is reparsed, and has to either set the

SymlinkPath parameter to the target path to be parsed by the object manager, or set the

Object parameter to the correct object that will be used as the target for this symbolic link.

This callback is set (or not set) by the ObCreateSymbolicLink function, based on an input

structure that contains flags and the target string or callback function:

#define OB_SYMLINK_TARGET_DYNAMIC 0x01
 typedef struct _OB_SYMLINK_TARGET

 {
 ULONG Flags;

 union
 {

 UNICODE_STRING LinkTarget;
 struct

 {
 POBJECT_SYMBOLIC_LINK_CALLBACK Callback;

 PVOID CallbackContext;
 };

 };
 } OB_SYMLINK_TARGET, *POB_SYMLINK_TARGET;

Based on this parameter, the function creates a symbolic link object and sets its target:

NTSTATUS
 ObCreateSymbolicLink (

 Out PHANDLE LinkHandle,
 In ACCESS_MASK DesiredAccess,

 In POBJECT_ATTRIBUTES ObjectAttributes,

3/13

 In POB_SYMLINK_TARGET TargetInfo,
 In KPROCESSOR_MODE AccessMode

)
 {

 NTSTATUS status;
 PWCHAR linkString;

 POBJECT_SYMBOLIC_LINK symlinkObject;
 HANDLE linkHandle;

 //
 // Create the symlink object

 //
 symlinkObject = NULL;

 status = ObCreateObjectEx(AccessMode,
 ObpSymbolicLinkObjectType,

 ObjectAttributes,
 AccessMode,

 0,
 sizeof(*symlinkObject),

 0,
 0,
 &symlinkObject,

 NULL);
 if (NT_SUCCESS(status))

 {
 KeQuerySystemTime(&symlinkObject->CreationTime);

 symlinkObject->DosDeviceDriveIndex = 0;
 symlinkObject->Flags = 0;

 //
 // If the symlink has a dynamic target, set the flags accordingly

 // and populate the callback field
 //

 if (TargetInfo->Flags & OB_SYMLINK_TARGET_DYNAMIC)
 {

 symlinkObject->Flags = OBJECT_SYMBOLIC_LINK_USE_CALLBACK;
 symlinkObject->Callback = TargetInfo->Callback;

 }
 else

 {
 //

 // If the symlink doesn't have a dynamic target, set the
LinkTarget to the string

 //
 symlinkObject->LinkTarget.MaximumLength = TargetInfo-

>LinkTarget.MaximumLength;

4/13

 symlinkObject->LinkTarget.Length = TargetInfo-
>LinkTarget.Length;

 linkString = (PWCHAR)ExAllocatePoolWithTag(PagedPool,
 TargetInfo-

>LinkTarget.MaximumLength,
 'tmyS');

 symlinkObject->LinkTarget.Buffer = linkString;
 if (linkString == NULL)

 {
 status = STATUS_NO_MEMORY;

 goto Exit;
 }

 RtlCopyMemory(linkString,
 TargetInfo->LinkTarget.Buffer,

 TargetInfo->LinkTarget.MaximumLength);
 }

 if (RtlIsSandboxedToken(NULL, AccessMode) != FALSE)
 {

 symlinkObject->Flags |= OBJECT_SYMBOLIC_IS_SANDBOXED;
 }

 status = ObInsertObjectEx(symlinkObject,
 NULL,

 DesiredAccess,
 0,

 0,
 NULL,

 &linkHandle);
 symlinkObject = NULL;

 if (NT_SUCCESS(status))
 {

 *LinkHandle = linkHandle;
 status = STATUS_SUCCESS;

 }
 }

Exit:
 if (symlinkObject != NULL)

 {
 ObDereferenceObject(symlinkObject);

 }

5/13

 return status;
 }

Unfortunately, ObCreateSymbolicLink is not exported, so we can’t call it ourselves and

create a symbolic link with a callback function. It’s never that simple. The function has 2

callers – NtCreateSymbolicLinkObject and MiCreateMemoryEvent . The latter function

handles the Memory Partition functionality we described earlier. It creates the various

memory events as symbolic links with no target strings, and sets their callback to

MiResolveMemoryEvent :

You can see these symbolic links in WinObjEx . They can be recognized by having no target

string:

https://windows-internals.com/wp-content/uploads/2020/01/img1.png
https://windows-internals.com/wp-content/uploads/2020/01/img2.png

6/13

But MiCreateMemoryEvent is an internal function that is not very useful for us in this case.

So we turn to look at NtCreateSymbolicLinkObject which gives us very little to work

with:

It always sets the Flags for the OB_SYMLINK_TARGET structure to 0 , meaning the target

is always a string, not a function pointer. This is unfortunate, since it means we can’t create

symbolic link objects containing callbacks from user mode. But we didn’t really expect that to

be possible, so we weren’t devastated. Instead, we decided to try and modify an existing

symbolic link – we can use this feature to hook some frequently used symlink and register

our own function to be called whenever it’s used.

We chose the symbolic link for the C: volume as our target. To achieve our goal, we first

needed to open the symbolic link and get its object so we could modify it:

NTSTATUS status;
 HANDLE symLinkHandle = NULL;

 POBJECT_SYMBOLIC_LINK symlinkObject;
 UNICODE_STRING symlinkName = RTL_CONSTANT_STRING(L"\\GLOBAL??\\c:");

 OBJECT_ATTRIBUTES objectAttributes =
 RTL_CONSTANT_OBJECT_ATTRIBUTES(&symlinkName,

 OBJ_KERNEL_HANDLE | OBJ_CASE_INSENSITIVE);
 //

 // Open a handle to the symbolic link object for C: directory,
 // so we can hook it

 //
 status = ZwOpenSymbolicLinkObject(&symLinkHandle,

 SYMBOLIC_LINK_ALL_ACCESS,
 &objectAttributes);

 if (!NT_SUCCESS(status))
 {

 goto Cleanup;

//
 // Get the symbolic link object

 //
 status = ObReferenceObjectByHandle(symLinkHandle,

https://windows-internals.com/wp-content/uploads/2020/01/img3.png

7/13

 SYMBOLIC_LINK_ALL_ACCESS,
 NULL,

 KernelMode,
 (PVOID*)&symlinkObject,

 NULL);
 if (!NT_SUCCESS(status))

 {
 goto Cleanup;

 }
 //

 // Save the original string that the symlink points to
 // so we can change the object back when we unload

 //
 origStr = symlinkObj->LinkTarget;

After we got our requested symbolic link object, we needed to save either the target string or

the device it would point to, in order to return it from our callback function. Retrieving the

device is messy and can have some issues, while the target string is right there in the object

itself. We stored it in a global variable, and then we had everything we needed to modify the

symbolic link. We just needed to create our callback function:

NTSTATUS
 SymLinkCallback (

 In POBJECT_SYMBOLIC_LINK Symlink,
 In PVOID SymlinkContext,

 Out PUNICODE_STRING SymlinkPath,
 Outptr PVOID* Object

)
 {

 UNREFERENCED_PARAMETER(Symlink);

 //
 // We need to either return the right object for this symlink

 // or the correct target string.
 // It's a lot easier to get the string, so we can set Object to Null.

 //
 *Object = NULL;

 *SymlinkPath = *(PUNICODE_STRING)(SymlinkContext); // OrigStr

 return STATUS_SUCCESS;
 }

The symlinkCallback function receives the symbolic link object, 2 output parameters

(only one of which must be set by the function) and a SymlinkContext parameter, which is

controlled by whoever is registering the function. We chose to use this context to store the

8/13

original LinkTarget string, so we can set the output SymlinkPath parameter to it and

send the symlink to its correct destination.

After we defined our callback function, we could go back to our main function and edit the

symlink object:

//
 // Modify the symlink to point to our callback instead of the string

 // and change the flags so the union will be treated as a callback.
 // Set CallbackContext to the original string so we can

 // return it from the callback and allow the system to run normally.
 //

 symlinkObj->Callback = SymLinkCallback;
 symlinkObj->CallbackContext = &symlinkObj->LinkTarget;

 _MemoryBarrier();
 symlinkObj->Flags |= OBJECT_SYMBOLIC_LINK_USE_CALLBACK;

Theoretically, we were done. We could load our driver and every access to the C: volume

should reach our callback. But as some of you might notice, there is actually a race condition

here. Since the callback function and context are part of a union which could also be a

Unicode String, the data placed there can be interpreted as the wrong type, causing a type

confusion and the inevitable crash.

union
 {

 UNICODE_STRING LinkTarget;
 struct

 {
 PVOID Callback;

 PVOID CallbackContext;
 };

 };

The type of this data is determined by OBJECT_SYMBOLIC_LINK.Flags , but the Callback

field is too far from the Flags field in the OBJECT_SYMBOLIC_LINK structure. This means

that we can’t change both with a single CPU instruction, unless we go into the realm of Intel’s

Transactional Synchronization eXtensions (TSX), which would allow us to perform all these

accesses as a single memory transaction without any races. However, outside of side-channel

bugs, there doesn’t seem to be any real-world practical uses of TSX, and we’d hate to the be

the first ones to suggest any, lest this feature be actually uncancelled by Intel.

This means if we change the flags first, someone might try to access this symlink before we

changed the LinkTarget string and the kernel will try to call a Unicode String as if it was

executable memory, leading to a crash. Or if we change the string first and someone tries to

use the symlink, the kernel will interpret the lower 2 bytes of our callback address as the

9/13

string length and will try to read that many bytes as a string. That can come up to a huge

number that will lead to unexpected results, but most likely to reading invalid memory and

again, a crash.

We have found a way to get around this issue, and we think it was a pretty clever idea. It did

require about 45 minutes of fighting the linker settings, but that’s just a price you have to

pay sometimes. We also realized that a “simpler” solution is possible as well: creating our

own OBJECT_SYMBOLIC_LINK with the right settings and then modifying the

OBJECT_DIRECTORY_ENTRY to swap the pointer of the original object with ours. Because it’s

a simple pointer, we can use InterlockedCompareExchangePointer. Additionally, the

OBJECT_DIRECTORY has a lock (EX_PUSH_LOCK) we could use to make the operation totally

safe. But we liked our clever way better (and wanted to show off).

As we mentioned – if we change the string pointer to our function pointer and someone tries

to use the symlink before we change the flags, they are going to treat the first 2 bytes of the

callback address as a string length and try to parse the “string” based on that. Therefore, we

decided to just make sure the lower 2 bytes of the callback address are 0000 , so the length

is treated as 0 and no string parsing is attempted. This means we need to align our callback

function to 64KB . Doing that required a lot of attempts and some linker magic, but what

eventually worked was this:

Create a section named .call$0 and place in it a buffer sized 0xB000 .

Fill this buffer with zeroes so it won’t be optimized out by the compiler. We picked

0xB000 because we noticed the .text segment was at 0x5000 , which got our

section to therefore be at 0xB000+0x5000 (0x10000 – 64KB) bytes.

Immediately after this, create the normal .text segment, where most of our code will

be.

After all the other functions, create an executable section named .call$1 and place

our callback function there.

This is what our driver is going to look like after making these changes:

EXTERN_C_START

__declspec(code_seg(".call$1"))
 NTSTATUS

 SymLinkCallback (
 In POBJECT_SYMBOLIC_LINK Symlink,

 In PVOID SymlinkContext,
 Out PUNICODE_STRING SymlinkPath ,

 Outptr PVOID* Object
);

EXTERN_C_END

10/13

#pragma section(".call$0", write)
 __declspec(allocate(".call$0")) UCHAR buffer[0xB000] = { 0 };

#pragma code_seg(".text")
 _Use_decl_annotations_

 NTSTATUS
 DriverEntry (

 PDRIVER_OBJECT DriverObject,
 PUNICODE_STRING RegistryPath
)

 {
 ...

 }

#pragma section(".call$1", execute)
 __declspec(code_seg(".call$1"))

NTSTATUS
 SymLinkCallback (

 In POBJECT_SYMBOLIC_LINK Symlink,
 In PVOID SymlinkContext,

 Out PUNICODE_STRING SymlinkPath,
 Outptr PVOID* Object

)
 {

 ...
 }

We compiled our driver and opened it in IDA to see the address of our callback function:

Let’s load our driver and see what happens if we try to treat the symbolic link target as a

string…

https://windows-internals.com/wp-content/uploads/2020/01/img4.png

11/13

We dump the symbolic link that we modified, and we can see that when trying to treat our

callback address as a Unicode String we get a string with Length == 0 , which fixes our race

condition.

Of course, if we ever want to be able to unload our driver we also need to implement an

unload routine that will change the symbolic link back to its original target. We saved the

object in a global symlinkObj variable, and saved the original LinkTarget in a global

origStr variable, so we can change everything back when we unload:

_Use_decl_annotations_
 VOID

 DriverUnload (
 In PDRIVER_OBJECT DriverObject

)
 {

 UNREFERENCED_PARAMETER(DriverObject);

 symlinkObj->Flags &= ~OBJECT_SYMBOLIC_LINK_SANDBOXED;
 _MemoryBarrier();

 symlinkObj->LinkTarget = origStr;

 ObDereferenceObject(symlinkObj);
 }

It’s important to first change Flags and only then the LinkTarget to avoid the same race as

before. That being said, you probably noticed a second interesting line of code (and unusual

in security PoC code) – the call to _MemoryBarrier() . You probably already know that

compilers reserve the right to re-order any memory operation performed on non-volatile

variables (or members), meaning that there’s no guarantee that the way we wrote these two

lines of C would actually end up matching in assembly code.

To solve this, Visual C/C++ includes inline functions such as _ReadWriteBarrier() .

However, modern processors themselves can also choose to re-order memory operations at a

hardware level, meaning that these two writes could also happen in a different sequence (the

https://windows-internals.com/wp-content/uploads/2020/01/img5.png

12/13

same thing can sometimes happen for reads too). To solve the hardware re-ordering issue, we

need to use a fence instruction, which is what _MemoryBarrier() does.

Now we have a working callback function that gets called whenever anyone tries to access the

C: volume. This method is not visible and will not be detected unless specifically searched

for. WinObjEx will show this symbolic link as having no target, which will only look

suspicious to someone looking for this technique (although some existing legitimate symbolic

links, such as the ones in \KernelObjects , already look like this).

You can get the source code for this simple rootkit driver from our GitHub repo here.

But there is one more thing we want to achieve – getting the full path requested by the caller

every time the symbolic link is being accessed. This would let us, for example, return

different files or directories depending on who the caller is, as well as monitor accesses. Our

callback does not receive this information, and none of us wanted to implement stack parsing

to find it. As such, we started looking for a different option… unfortunately, it seemed our last

blog post was over 40 pages, and while we heard this was useful for people taking entire

afternoons off at certain organizations, we’ll break things up this time and see you in a future

Part 2 !

Read our other blog posts:

https://windows-internals.com/wp-content/uploads/2020/01/winobjex.png
https://github.com/yardenshafir/SymlinkCallback

13/13

