
1/9

By Yarden Shafir & Alex Ionescu

Symbolic Hooks Part 2 : Getting the Target Name
windows-internals.com/symhooks-part-two

In our last blog part, we concluded with a working callback, but no information about the

path being opened. Of course, we could get it from the stack since it should be saved there

somewhere, but we thought there must be a more elegant way. We also wanted to avoid

writing a book on Unwind Opcodes and how they can be used to recover stack parameters

efficiently.

And so, we to go a different path, and come up with a way to force our own sort of parse

routine to execute, in which we could get the original path, and take a decision as to whether

or not to redirect the caller. Two options came to mind:

We could create a new object type with ObCreateObjectTypeEx , implement our own

ParseRoutine , and have the symlink redirect to an object of our type so that we can

have our routine return STATUS_REPARSE , with the name of the original target Device

Object.

We could create a new Device Object with IoCreateDevice , implement our own

IRP_MJ_CREATE handler, and have it use the I/O Manager’s existing reparsing logic

(which it calls transmogrification) so that we can return STATUS_REPARSE and a new

name for any File Object it creates, which would re-direct it to the original target Device

Object.

Ultimately, creating a new object type is undocumented, monitored by Patch Guard if we

make any wrong moves, and, most importantly, does not have a matching API to

undo/destroy the operation. Yep, there is no way to delete an object type, thus our driver

would never be able to unload.

Therefore, we decided to have our symlink callback redirect the symbolic link to a Device

Object we will create, instead of returning the original string. Then, when our Device Object’s

IRP_MJ_CREATE handler is called, the I/O Manager has already created a File Object, and

we can get it from the IRP , retrieve its name, plus any other information about it and the

creator/caller.

Thus, we first create our device – \Device\HarddiskVolume0 . Next, we get the symbolic

link to the C: volume the same way we showed in Part 1, and modify it to point to our

callback as the LinkTarget . Then, we only must make one change: instead of passing the

original link target string as a parameter in SymlinkContext , we pass in the path of our

new device:

https://windows-internals.com/symhooks-part-two/
https://windows-internals.com/dkom-now-with-symbolic-links/
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64

2/9

_Use_decl_annotations_
NTSTATUS

 DriverEntry (
 In PDRIVER_OBJECT DriverObject,

 In PUNICODE_STRING RegistryPath
)

 {
 NTSTATUS status;

 HANDLE symLinkHandle;
 DECLARE_CONST_UNICODE_STRING(symlinkName, L"\\GLOBAL??\\c:");

 OBJECT_ATTRIBUTES objAttr =

RTL_CONSTANT_OBJECT_ATTRIBUTES(&symlinkName,

 OBJ_KERNEL_HANDLE |

 OBJ_CASE_INSENSITIVE);
 UNREFERENCED_PARAMETER(RegistryPath);

 //
 // Make sure our alignment trick worked out

 //
 if (((ULONG_PTR)SymLinkCallback & 0xFFFF) != 0)

 {
 status = STATUS_CONFLICTING_ADDRESSES;

 DbgPrintEx(DPFLTR_IHVDRIVER_ID,
 DPFLTR_ERROR_LEVEL,

 "Callback function not aligned correctly!\n");
 goto Exit;

 //
 // Set an unload routine so we can update during testing

 //
 DriverObject->DriverUnload = DriverUnload;

 //
 // Open a handle to the symbolic link object for C: directory,

 // so we can hook it
 //

 status = ZwOpenSymbolicLinkObject(&symLinkHandle,
 SYMBOLIC_LINK_ALL_ACCESS,

 &objAttr);
 if (!NT_SUCCESS(status))

 {
 DbgPrintEx(DPFLTR_IHVDRIVER_ID,

 DPFLTR_ERROR_LEVEL,

3/9

 "Failed opening symbolic link with error: %lx\n",
 status);

 goto Exit;

 //
 // Get the symbolic link object and close the handle since we

 // no longer need it
 //

 status = ObReferenceObjectByHandle(symLinkHandle,
 SYMBOLIC_LINK_ALL_ACCESS,

 NULL,
 KernelMode,

 (PVOID*)&g_SymLinkObject,
 NULL);

 ObCloseHandle(symLinkHandle, KernelMode);
 if (!NT_SUCCESS(status))

 {
 DbgPrintEx(DPFLTR_IHVDRIVER_ID,

 DPFLTR_ERROR_LEVEL,
 "Failed referencing symbolic link with error: %lx\n",

 status);
 goto Exit;

 //
 // Create our device object hook

 //
 RtlAppendUnicodeToString(&g_DeviceName, L"\\Device\\HarddiskVolume0");

 status = IoCreateDevice(DriverObject,
 0,

 &g_DeviceName,
 FILE_DEVICE_UNKNOWN,

 0,
 FALSE,

 &g_DeviceObject);
 if (!NT_SUCCESS(status))

 {
 //

 // Fail, and drop the symlink object reference
 //

 ObDereferenceObject(g_SymLinkObject);
 DbgPrintEx(DPFLTR_IHVDRIVER_ID,

 DPFLTR_ERROR_LEVEL,
 "Failed create devobj with error: %lx\n",

 status);
 goto Exit;

4/9

 //
 // Attach our create handler

 //
 DriverObject->MajorFunction[IRP_MJ_CREATE] = SymHookCreate;

 //
 // Save the original string that the symlink points to

 // so we can change the object back when we unload
 //

 g_LinkPath = g_SymLinkObject->LinkTarget;

 //
 // Modify the symlink to point to our callback instead of the string

 // and change the flags so the union will be treated as a callback.
 // Set CallbackContext to the original string so we can

 // return it from the callback and allow the system to run normally.
 //

 g_SymLinkObject->Callback = SymLinkCallback;
 RtlAppendUnicodeStringToString(&g_DeviceName, &g_TailName);

 g_SymLinkObject->CallbackContext = &g_DeviceName;
 MemoryBarrier();

 g_SymLinkObject->Flags |= OBJECT_SYMBOLIC_LINK_USE_CALLBACK;

Exit:
 //

 // Return the result back to the system
 //

 return status;
 }

This code means that when someone tries to access the symlink they will reach our callback

and will receive the path to our Device Object path (\Device\HarddiskVolume0) instead of

\Device\HarddiskVolume<N> , where N is the real C: partition.

Then, when this path will be opened, the I/O manager will create a File Object for the

remaining path, such as \Windows\Notepad.exe , and will then call our Driver Object’s

IRP_MJ_CREATE handler, where we will get this name from the FILE_OBJECT structure,

and replace it with a new, fully qualified path, including both the original Device Object path

and the remaining path.

Replacing a FILE_OBJECT name is trickier than it sounds – the original path, allocated by

the I/O Manager, has a specific pool tag, and us freeing it and allocating our own would look

like a leak to various testing tools such as Driver Verifier, unless we mimic the original tag.

5/9

To fix this issue, Microsoft implemented a special API: IoReplaceFileObjectName . Not

only does it use the correct internal kernel pool tag, but it also implements certain

optimizations such that the length of the file name string buffer will always be “aligned” to

56 , 120 , or 248 bytes (unless the name is bigger, in which case the precise size is used).

This avoids having to free/re-allocate the buffer in many situations, as the new name can

simply override the old.

Here’s how creating this new name ends up looking like:

//
 // Get the FILE_OBJECT from the I/O Stack Location

 //
 ioStack = IoGetCurrentIrpStackLocation(Irp);

 fileObject = ioStack->FileObject;

//
 // Allocate space for the original device name, plus the size of the

 // file name, and adding space for the terminating NUL.
 //

 bufferLength = fileObject->FileName.Length +
 g_LinkPath.Length +

 sizeof(UNICODE_NULL);
 buffer = (PWCHAR)ExAllocatePoolWithTag(PagedPool, bufferLength, 'maNF');

 if (buffer == NULL)
 {

 status = STATUS_INSUFFICIENT_RESOURCES;
 goto Exit;

//
 // Append the original device name first

 //
 buffer[0] = UNICODE_NULL;

 NT_VERIFY(NT_SUCCESS(RtlStringCbCatNW(buffer,
 bufferLength,

 g_LinkPath.Buffer,
 g_LinkPath.Length)));

//
 // Then add the name of the file name

 //
 NT_VERIFY(NT_SUCCESS(RtlStringCbCatNW(buffer,

 bufferLength,
 fileObject->FileName.Buffer,

 fileObject->FileName.Length)));

//

6/9

// Ask the I/O manager to free the original file name and use ours instead
//

 status = IoReplaceFileObjectName(fileObject,
 buffer,

 bufferLength - sizeof(UNICODE_NULL));
 if (!NT_SUCCESS(status))

 {
 DbgPrintEx(DPFLTR_IHVDRIVER_ID,

 DPFLTR_ERROR_LEVEL,
 "Failed to swap file object name: %lx\n",

 status);
 ExFreePool(buffer);
 goto Exit;

 }

Once we’re replaced the File Object’s name, this code still has a problem – we can’t return

STATUS_SUCCESS , since that would make us the owner Device Object for this new file, and

not actually point to the original target Device Object of the partition. All future I/O will flow

through our driver as IRP s, and we must now essentially implement forwarders for every

operation.

We could get the correct Device Object for \Device\HarddiskVolume<N> and manually

forward all IRP s to it, but then all requests will still be attached to our device. Not only does

this make us a lot more visible, but it essentially turns is into a file system filter driver. We

just want to get the creation request and then pass it on to the correct device and not have to

handle it ever again.

To make this work correctly, we have to exercise the I/O Manager’s transmogrification logic,

which is a two-step process:

1. Return STATUS_REPARSE , to indicate that a reparse operation is needed. This causes

IopParseDevice to look at the new name string in the File Object, and begin the

name lookup logic all over again, based on this new name, freeing the old object and

previous work done. This code is highly complex, but you can see a simpler version of it

in the ReactOS sources here.

2. Set the IRP’s Information field to IO_REPARSE , which indicates the type of reparsing

operation that we are attempting. This is normally where a true hard link or symlink

would be indicated by using a special reparse tag and a matching structure

documented by Microsoft, such as REPARSE_DATA_BUFFER. However, IO_REPARSE is a

magic/reserved value which indicates just a plain replacement of the name, and not a

true reparse point.

Taking these points into consideration, our IRP_MJ_CREATE handler completes with the

following logic:

https://github.com/reactos/reactos/blob/6d5a7b1ce3916acb5b61fe6bb6bf200fcfdde866/ntoskrnl/io/iomgr/file.c#L324
https://docs.microsoft.com/en-us/windows/win32/fileio/reparse-point-tags
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/ns-ntifs-_reparse_data_buffer

7/9

 //
 // Return a reparse operation so that the I/O manager uses the new
file

 // object name for its lookup, and starts over
 //

 Irp->IoStatus.Information = IO_REPARSE;
 status = STATUS_REPARSE;

Exit:
 //

 // Complete the IRP with the relevant status code
 //

 Irp->IoStatus.Status = status;
 IoCompleteRequest(Irp, IO_NO_INCREMENT);

 return status;

So now we have a mechanism that looks something like this:

Some of you might point out that this method will work just as well without using a symlink

callback at all – we could have just replaced the LinkTarget of the symbolic link with the

path of our device, and would have gotten all the requests anyway – in fact, we’d only have

had to change the last digit of the path. However, we felt that doing this makes us a lot more

visible, as anyone inspecting the symlink object will easily see this path, as well as a change in

the structure.

https://windows-internals.com/wp-content/uploads/2020/02/symlink_diagram-1.png

8/9

Another reason is that with the callback we can dynamically decide what to do. For example,

if we know we are being inspected by an AV driver, we can use the callback to return the

original string and not redirect the request to our device. We could even redirect to a

completely different device if we wanted to, without having to constantly keep changing the

path (which would result in a race condition anyway).

Excited to try things out, we load our new and improved driver and look at the results:

And get super happy, until, about 10 seconds later, we get a crash:

https://windows-internals.com/wp-content/uploads/2020/02/debug-print.png

9/9

Shit. When our device receives an open request for the root of the C: volume itself, it can’t

return STATUS_REPARSE , it’s in the rules.

So what do we do now? All will be revealed in part 3 (and 4… and possibly 5).

We have created a new branch on GitHub which implements the improved hooking

mechanism introduced in this part.

Read our other blog posts:

https://windows-internals.com/wp-content/uploads/2020/02/symlink_bsod_status_reparse.png
https://github.com/yardenshafir/SymlinkCallback/tree/part-two

