
1/4

By Yarden Shafir

CET Updates – CET on Xanax
windows-internals.com/cet-updates-cet-on-xanax

Windows 21H1 CET Improvements

Since Alex and I first published our first analysis of CET, Windows’ support for user-mode CET

received a few important changes that should be noted. We can easily spot most of them by looking

at the changes to the MitigationFlags2  field of the EPROCESS , when comparing Windows 10

Build 19013  with 20226 :

There are a lot of new mitigation flags here, and a few of them are related to CET:

CetUserShadowStackStrictMode  – annoyingly, this does not mean the same thing as Strict

CFG. Strict CET means that CET will be enforced for the process, regardless of whether it’s

compiled as CET compatible or not.

BlockNonCetBinaries  – as the name suggests, this feature blocks binaries that were not

compiled with CET support from being loaded into the process — just like Strict CFG.

CetDynamicApisOutOfProcOnly  – At first CET was supposed to block all non-approved RIP

changes. That was too much, so it was toned down to only block most non-approved RIP

targets. Then MS remembered dynamic memory, and couldn’t force dynamic memory to

comply with CET but insisted that allowing dynamic targets was only supported out of proc, so

not really a security risk. And now it seems that in proc dynamic APIs are allowed by default

and processes have to manually opt-out of that by setting this flag. In their defense, the flag is

already set for most important Windows processes such as winlogon.exe , lsass.exe ,

csrss.exe  and svchost.exe . But I’m sure that’s OK and we’ll never see CET bypasses

abusing dynamic APIs in proc.

UserCetSetContextIpValidationRelaxedMode  – Even after all the adjustments that were

made in order to not break any existing code, CET was still a bit too anxious, resulting in this

new mitigation. This new flag has a pretty curious name that might draw your attention. If it

did – good! Because this is the CET feature that this blog post will focus on.

But even without knowing the purpose of any of those, the amount of new CET flags alone hints that

this we are not expected to see CET being fully enforced across the system any time soon.

Relaxed Mode

https://windows-internals.com/cet-updates-cet-on-xanax/
https://windows-internals.com/cet-on-windows/
https://windows-internals.com/wp-content/uploads/2020/10/eprocess_mitigationflags2_diff.png


2/4

The least obvious of those new flags in the “relaxed mode” option. Was CET too anxious to handle

2020 and needed a bit of a break from everything? Well if it did, I think we can all relate to that and

shouldn’t judge to harshly.

This flag can be set on process creation, by calling UpdateProcThreadAttribute  with

PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY  and

PROCESS_CREATION_MITIGATION_POLICY2_USER_CET_SET_CONTEXT_IP_VALIDATION_RELAXED_MODE

as the mitigation policy flag.

It can also be set with a currently-undocumented linker flag, which will set the new

IMAGE_DLLCHARACTERISTICS_EX_CET_SET_CONTEXT_IP_VALIDATION_RELAXED_MODE  value in the

PE header information (see the end of the post for the definition).

Once the flag is set, it is only used in two places – KeVerifyContextIpForUserCet and

KiContinuePreviousModeUser . Both read it from the EPROCESS  and pass a Boolean value into

KiVerifyContextIpForUserCet  to indicate whether it’s enabled or not. Inside

KiVerifyContextIpForUserCet we can see this new addition that checks this argument:

RtlZeroMemory(&unwindState, sizeof(unwindState));
 if (continueType == KCONTINUE_UNWIND)

 {
     status = RtlVerifyUserUnwindTarget(userRip, KCONTINUE_UNWIND, &unwindState);

     if (NT_SUCCESS(status))
     {

         return status;
     }

if ((RelaxedMode != FALSE) && (continueType != KCONTINUE_RESUME))
 {

     if (unwindState.CheckedLoadConfig == FALSE)
     {

         status = RtlGetImageBaseAndLoadConfig(userRip, &unwindState.ImageBase,
&unwindState.LoadConfig);

         unwindState.CheckedLoadConfig = NT_SUCCESS(status) ? TRUE :
unwindState.CheckedLoadConfig;

    if (unwindState.CheckedLoadConfig != FALSE)
     {

         if (unwindState.ImageBase != NULL)
         {

             __try
             {

                 ProbeForRead(unwindState.LoadConfig,
                            

 RTL_SIZEOF_THROUGH_FIELD(IMAGE_LOAD_CONFIG_DIRECTORY64,

GuardEHContinuationCount),
                              sizeof(UCHAR));

 
 

                if ((unwindState.LoadConfig != NULL) &&

https://github.com/yardenshafir/cet-research/blob/master/src/KeVerifyContextIpForUserCet.c
https://github.com/yardenshafir/cet-research/blob/master/src/KiVerifyContextIpForUserCet.c


3/4

                    (unwindState.LoadConfig->Size >=
RTL_SIZEOF_THROUGH_FIELD(IMAGE_LOAD_CONFIG_DIRECTORY64,
GuardEHContinuationCount)) &&

                     (BooleanFlagOn(unwindState.LoadConfig->GuardFlags,

IMAGE_GUARD_EH_CONTINUATION_TABLE_PRESENT)))
                 {

                     goto CheckAddressInShadowStack;
                 }

             }
             __except

             {
                 goto CheckAddressInShadowStack;

             }
             return STATUS_SUCCESS;

         }
         return STATUS_SUCCESS;

     }
 }

At first look, this might seem like a lot and could be confusing. But with some context it becomes a

lot clearer. When implementing CET support, Microsoft ran into a problem.

NtSetContextThread  is widely used across the system by processes that don’t necessarily respect

the new “rules” of CET, and might use it to set RIP to addresses that are not found in the shadow

stack. Those processes might also unwind into addresses that are not considered valid by CET, and

since they were not compiled with proper CET support they will not have Static nor Dynamic

Exception Handler Continuation Targets (which we wrote about in the previous post) that are

recognized by CET. It won’t be possible to enable CET across the system without breaking all those

processes, some of which, like python, are very common. So, an option was added to “relax”

CetSetContextIpValidation  for those cases.

This check will be done for 2 continue types – all cases of KCONTINUE_SET , and cases of

KCONTINUE_UNWIND  where RtlVerifyUserUnwindTarget  failed.

To know whether we are looking at such a case, KiVerifyContextIpForUserCet  reads the

IMAGE_LOAD_CONFIG_DIRECTORY  structure from the headers of the module that contains the new

RIP value. If the module has no image base, no load config or no Exception Handler Continuation

Table, the function assumes that this is a module that is incompatible with CET and allows the

action. But if the module has as Exception Handler Continuation Table, the new RIP  value will be

checked against the shadow stack, just as if relaxed mode would not have been enabled.

A fun side effect of this is that for any process where “relaxed mode” is enabled, setting the context

or unwinding into JIT’ed code will always be permitted.

Load Config Directory Capturing

As part of this change MS also added a new UNWIND_STATE  structure (that is our name, as this new

structure is not in the public symbols) to hold the load configuration pointer and avoid reading the

headers more than once. The new structure looks like this:



4/4

struct _UNWIND_STATE
{

     PVOID ImageBase;
     PIMAGE_LOAD_CONFIG_DIRECTORY64 LoadConfig;

     BOOLEAN CheckedLoadConfig;
 } UNWIND_STATE, *PUNWIND_STATE;

The CheckedLoadConfig  flag is used to indicate that the LoadConfig  pointer is already

initialized that does not need to be read again. We’ll leave it as an excercise for the reader as to why

this change was introduced.

Forward-thinking Downgrades

As hardware supporting CET is about the be released and hopefully become common over the next

few years, the Windows implementation of CET doesn’t seem to be fully prepared for the change

and it looks like new challenges are only being discovered now. And judging by these “reserved”

image flags, it seems that some developers are expecting more CET changes and downgrades in the

future…

Read our other blog posts:

 

 

https://windows-internals.com/wp-content/uploads/2020/10/dll_characteristics_new.png

