
1/3

By Yarden Shafir

CET Updates – Dynamic Address Ranges
windows-internals.com/cet-updates-dynamic-address-ranges

In the last post I covered one new addition to CET – relaxed mode. But as we saw, there were a few other interesting additions. One

of them is CetDynamicApisOutOfProcOnly , which is the one I will be covering in this post and which was also backported to

20H1 and 20H2 .

But before I explain the flag, let’s talk about the mechanism that it mitigates.

Dynamic Enforced Address Ranges

As we know, Microsoft’s implementation of hardware CET prevents a process from setting the instruction pointer to non-approved

values through backward edge (“return”) flows, including through OS-provided mechanisms. Whether it’s by returning to an

address that’s different from the one that’s in the shadow stack, or setting the thread context, or unwinding to an unexpected

address during exception handling. But like we’ve seen in the last two posts, there are cases that require special handling. One of

those is dynamically generated (JIT) code.

Such code doesn’t always follow the rules and assumptions of CET, so Microsoft added a way to handle its needs, similar to the

handling of Dynamic Exception Handler Continuation Targets, which I talked about in the first post. In this solution, a process can

declare some ranges as “CET compatible” such that setting the instruction pointer to any address within that range won’t trigger a

CET exception (#CP) that will crash the process.

To keep those ranges, the EPROCESS received a new field:

typedef struct _EPROCESS
 {

 ...
 /* 0x0b18 */ struct _RTL_AVL_TREE DynamicEHContinuationTargetsTree;

 /* 0x0b20 */ struct _EX_PUSH_LOCK DynamicEHContinuationTargetsLock;
 /* 0x0b28 */ struct _PS_DYNAMIC_ENFORCED_ADDRESS_RANGES DynamicEnforcedCetCompatibleRanges;
 /* 0x0b38 */ unsigned long DisabledComponentFlags;

 ...
 } EPROCESS, *PEPROCESS;

This new PS_DYNAMIC_ENFORCED_ADDRESS_RANGES structure contains an RTL_AVL_TREE and an EX_PUSH_LOCK . New ranges

are inserted into the tree through a call to NtSetInformationProcess with the new information class

ProcessDynamicEnforcedCetCompatibleRanges (0x66). The caller supplies a pointer to a

PROCESS_DYNAMIC_ENFORCED_ADDRESS_RANGE_INFORMATION structure as the ProcessInformation argument, which contains

the ranges to insert into the tree, or remove from it, depending on the Flags field:

typedef struct _PROCESS_DYNAMIC_ENFORCED_ADDRESS_RANGE
 {

 ULONG_PTR BaseAddress;
 SIZE_T Size;

 DWORD Flags;
 } PROCESS_DYNAMIC_ENFORCED_ADDRESS_RANGE, *PPROCESS_DYNAMIC_ENFORCED_ADDRESS_RANGE;

typedef struct _PROCESS_DYNAMIC_ENFORCED_ADDRESS_RANGES_INFORMATION
 {

 WORD NumberOfRanges;
 WORD Reserved;

 DWORD Reserved2;
 PPROCESS_DYNAMIC_ENFORCED_ADDRESS_RANGE Ranges;

 } PROCESS_DYNAMIC_ENFORCED_ADDRESS_RANGES_INFORMATION, *PPROCESS_DYNAMIC_ENFORCED_ADDRESS_RANGES_INFORMATION;

The ranges are then read from the structure and inserted into the tree by the PspProcessDynamicEnforcedAddressRanges

function. Of course, the process doesn’t have to call NtSetInformationProcess directly, as there is a wrapper function for this in

the Win32 API exposed by KernelBase.dll – SetProcessDynamicEnforcedCetCompatibleRanges :

https://windows-internals.com/cet-updates-dynamic-address-ranges/
https://windows-internals.com/cet-updates-cet-on-xanax/
https://support.microsoft.com/en-us/help/4586853/windows-10-update-kb4586853

2/3

BOOL
SetProcessDynamicEnforcedCetCompatibleRanges (

 In HANDLE ProcessHandle,
 In WORD NumberOfRanges,

 In PPROCESS_DYNAMIC_ENFORCED_ADDRESS_RANGE Ranges
)

 {
 NTSTATUS status;

 PROCESS_DYNAMIC_ENFORCED_ADDRESS_RANGES_INFORMATION dynamicEnforcedAddressRanges;
 dynamicEnforcedAddressRanges.NumberOfRanges = NumberOfRanges;

 dynamicEnforcedAddressRanges.Ranges = Ranges;
 status = NtSetInformationProcess(ProcessHandle,

 ProcessDynamicEnforcedCetCompatibleRanges,
 &dynamicEnforcedAddressRanges,

 sizeof(PROCESS_DYNAMIC_ENFORCED_ADDRESS_RANGES_INFORMATION));
 if (NT_SUCCESS(status))

 {
 return TRUE;

 }
 BaseSetLastNTError(status);

 return FALSE;
 }

This tree is used every time a CET fault happens – KiControlProtectionFaultShadow is invoked. It calls into

KiControlProtectionFault , which calls KiProcessControlProtection . This function will look for the target address in the

shadow stack and if it fails, will try the dynamic enforced CET compatible ranges through an exception handler.

First, the handler checks in strict CET is enabled in the system, to know whether it should check if the process has CET enabled (as

a reminder, strict CET means that CET checks will be performed on all processes, regardless of how they were compiled). If strict

mode is not enabled, the function will check the image headers for the CETCOMPAT flags and will skip the ranges check if the flag is

not set.

If it was determined that CET should be enforced for the image, the function will call

RtlFindDynamicEnforcedAddressInRanges to check if the target address is inside one dynamically enforced CET compatible

address ranges. The function returns a BOOLEAN value to indicate whether a suitable range for the address was found or not. If a

range was found, or if for some other reason the process should not be crashed (process is not CET compatible or audit mode is

enabled), the function will then call KiFixupControlProtectionUserModeReturnMismatch to insert the target address into the

shadow stack to allow the process to continue normal execution.

The Mitigation

Looking at all of this, an obvious flaw comes to mind. If a process can declare ranges that will be ignored by CET, all an exploit

needs to do to bypass CET is manage to add a useful range in the process memory to the tree, and then ROP itself in the approved

range.

This is why the CetDynamicApisOutOfProcOnly flag was added – it only allows a process to add dynamic CET compatible ranges

for remote processes, and not for themselves. It does a very simple thing – inside NtSetInformationProcess , before calling

PspProcessDynamicEnforcedAddressRanges , the function checks if CetDynamicApisOutOfProcOnly is set for the process and

if the process is trying to add dynamic CET compatible ranges for itself. If so, the function will return STATUS_ACCESS_DENIED and

the attempt will fail.

And actually in the newest builds of Windows, almost all Windows processes have this flag set by default. The only process that

doesn’t appear to have it enabled is the Idle process (which doesn’t have a real EPROCESS structure, only a KPROCESS , so we’re

effectively reading garbage memory).

Read our other blog posts:

https://windows-internals.com/wp-content/uploads/2020/10/cetDynamicApisOutOfProc.png

3/3

