
1/18

www.sentinelone.com /blog/hive-ransomware-deploys-novel-ipfuscation-technique/

From the Front Lines | Hive Ransomware Deploys Novel IPfuscation
Technique To Avoid Detection
⋮ 3/29/2022

By James Haughom, Antonis Terefos, Jim Walter, Jeff Cavanaugh, Nick Fox, and Shai Tilias

Overview

In a recent IR engagement, our team happened upon a rather interesting packer (aka crypter or obfuscator) that was
ultimately utilized to construct and execute shellcode responsible for downloading a Cobalt Strike Beacon. The
sample at the end of this chain is not necessarily sophisticated or particularly novel, but it does leverage an
interesting obfuscation technique that we have dubbed “IPfuscation”.

In this post, we describe this novel technique as it is used across several variants of malware. Along with the
IPfuscation technique, we have identified a number of markers which have allowed us to pivot into additional
discoveries around the actor or group behind this campaign.

Technical Details

The samples in question are 64-bit Windows Portable Executables, each containing an obfuscated payload used to
deliver an additional implant. The obfuscated payload masquerades itself as an array of ASCII IPv4 addresses. Each
one of these IPs is passed to the RtlIpv4StringToAddressA function, which will translate the ASCII IP string to binary.
The binary representation of all of these IPs is combined to form a blob of shellcode.

The general flow is:

1. Iterate through “IPs” (ASCII strings)
2. Translate “IPs” to binary to reveal shellcode
3. Execute shellcode either by:

Proxying execution via callback param passed to EnumUILanguagesA

https://www.sentinelone.com/blog/hive-ransomware-deploys-novel-ipfuscation-technique/
https://docs.microsoft.com/en-us/windows/win32/api/ip2string/nf-ip2string-rtlipv4stringtoaddressa
https://docs.microsoft.com/en-us/windows/win32/api/winnls/nf-winnls-enumuilanguagesa

2/18

Direct SYSCALLs

Using byte sequences, sequences of WinAPI calls, and some hardcoded metadata affiliated with the malware author,
we were able to identify a handful of other variants of this loader (hashes provided below with the IOCs), one of which
we have dubbed “UUIDfuscation” and was also recently reported on by Jason Reaves. A Golang Cobalt Strike loader
was also discovered during the investigation, which had a hardcoded source code path similar to what we have
already seen with the ‘IPfuscated’ samples, suggesting that the same author may be responsible for both.

Tools, COTS, LOLBINs and More
The TTPs uncovered during the incident align with previous reporting of the Hive Ransomware Affiliate Program, with
the attackers having a preference for publicly available Penetration Testing frameworks and tooling (see TTPs table).
Like many other ransomware groups, pre-deployment Powershell and BAT scripts are used to prepare the
environment for distribution of the ransomware, while ADFind, SharpView, and BloodHound are used for Active
Directory enumeration. Password spraying was performed with SharpHashSpray and SharpDomainSpray, while
Rubeus was used to request TGTs. Cobalt Strike remains their implant of choice, and several different Cobalt Strike
loaders were identified including: IPfuscated loader, Golang loader, and a vanilla Beacon DLL. Finally, GPOs and
Scheduled Tasks are used to deploy digitally signed ransomware across the victim’s network.

IPfuscated Cobalt Strike Loader

Our team discovered and analyzed a 64-bit PE (4fcc141c13a4a67e74b9f1372cfb8b722426513a) with a hardcoded
PDB path matching the project structure of a Visual Studio project.

C:\Users\Administrator\source\repos\ConsoleApplication1\x64\Release\ConsoleApplication1.pd

This particular sample leverages the IPfuscation technique. Within the binary is what appears to be an array of IP
addresses.

https://medium.com/walmartglobaltech/cobaltstrike-uuid-stager-ca7e82f7bb64

3/18

Each of these “IP addresses” is passed to RtlIpv4StringToAddressA and then written to heap memory.

4/18

What is interesting is that these “IP addresses” are not used for network communication, but instead represent an
encoded payload. The binary representation of these IP-formatted strings produced by
RtlIpv4StringToAddressA is actually a blob of shellcode.

For example, the first hardcoded IP-formatted string is the ASCII string “252.72.131.228”, which has a binary
representation of 0xE48348FC (big endian), and the next “IP” to be translated is “240.232.200.0”, which has a binary
representation of 0xC8E8F0. Together, they create the below sequence of bytes.

Disassembling these “binary representations” shows the start of shellcode generated by common pentesting
frameworks.

Once the shellcode has finished being deobfuscated in this manner, the malware proxies invocation of the shellcode
by passing its address to the EnumUILanguagesA WinAPI function. This is achieved by supplying the shellcode
address as the UILanguageEnumProc, which is a callback routine to be executed.

5/18

The shellcode is the common Cobalt Strike stager to download and execute Beacon. Here is a look at the PEB
traversal to find one of the modules lists, followed by the ROT13 hash being calculated for target WinAPIs to execute.

Hell’s Gate Variant
A handful of additional samples were found with a similar sequence of functions and static properties, including the
same error message. The Hell’s Gate variant (d83df37d263fc9201aa4d98ace9ab57efbb90922) is different from the
previous sample in that it uses Hell’s Gate (direct SYSCALLs) rather than EnumUILanguagesA to execute the
deobfuscated shellcode. This sample’s PDB path is:

E:\Users\PC\source\repos\HellsGate+ipv4\x64\Release\HellsGate+ipv4.pdb

In this variant, the IP-formatted strings are procedurally placed in local variables, rather than being looped through as
seen previously.

https://github.com/am0nsec/HellsGate

6/18

Once all the IP strings have been defined within the scope of this function, memory is allocated with
NtAllocateVirtualMemory via a direct SYSCALL, and the deobfuscation loop commences.

7/18

Following the loop, a few SYSCALLs are made to pass control flow to the deobfuscated shellcode.

8/18

IPfuscation Variants

Among the discovered variants were three additional obfuscation methods using techniques very similar to
IPfuscation. Rather than using IPv4 addresses, the following were also found being used to hide the payload:

IPfuscation – IPv6 addresses
UUIDfuscation – UUIDs & base64 encoded UUIDs
MACfuscation – MAC addresses

Here we can see the original IPfuscated sample versus the UUID variant being translated via UuidFromStringA.

The UUID variant stores the obfuscated payload in the same manner as IPfuscated samples.

9/18

The MAC address variant translates the shellcode via RtlEthernetStringToAdressA and then uses a callback
function, a parameter to EnumWindows, to pass control flow to the shellcode. Again, the MAC addresses forming the
payload are stored the same as with previous variants.

The IPv6 variants operate almost identically to the original IPfuscated sample. The only difference is that IPv6-style
address are used, and RtlIpv6StringToAddressA is called to translate the string to binary data.

10/18

Golang Cobalt Strike Loader
Among other samples discovered during the incident was a Golang-compiled EXE
(3a743e2f63097aa15cec5132ad076b87a9133274) with a reference to a source code Golang file that follows the
same syntax as one of the identified IPfuscated samples.

[0x0045d2c0]> iz~go~Users

4542 0x000d62e9 0x004d78e9 27 28 .rdata ascii

C:/Users/76383/tmp/JzkFF.go

GetProcAddress is called repeatedly, with 8 byte stack strings being used to form the WinAPI names to be located
in memory.

11/18

The shellcode is stored as a cleartext hexadecimal string in the .rdata section.

12/18

This string is read into a buffer and translated into binary, somewhat similar to the IPfuscated flow.

13/18

Before translation into binary:

14/18

After translation into binary:

Control flow is then passed to the shellcode, which is yet another Cobalt Strike stager attempting to download
Beacon.

Conclusion
Our incident response team is constantly intercepting early-use tactics, techniques and artifacts, with IPfuscation just
the latest such technique deployed by malware authors. Such techniques prove that oftentimes a creative and
ingenious approach can be just as effective as a highly sophisticated and advanced one, particularly when enterprise
defense is based on security tools that rely on static signatures rather than on behavioral detection.

If you would like to learn how SentinelOne can help protect your organization regardless of the attack vector, contact
us or request a free demo.

Indicators of Compromise

SHA1 Description
d83df37d263fc9201aa4d98ace9ab57efbb90922 IPfuscated Cobalt Strike stager (Hell’s Gate variant)
49fa346b81f5470e730219e9ed8ec9db8dd3a7fa IPfuscated Cobalt Strike stager
fa8795e9a9eb5040842f616119c5ab3153ad71c8 IPfuscated Cobalt Strike stager
6b5036bd273d9bd4353905107755416e7a37c441 IPfuscated Cobalt Strike stager
8a4408e4d78851bd6ee8d0249768c4d75c5c5f48 IPfuscated Cobalt Strike stager
49fa346b81f5470e730219e9ed8ec9db8dd3a7fa IPfuscated Cobalt Strike stager
6e91cea0ec671cde7316df3d39ba6ea6464e60d9 IPfuscated Cobalt Strike stager
24c862dc2f67383719460f692722ac91a4ed5a3b IPfuscated Cobalt Strike stager
415dc50927f9cb3dcd9256aef91152bf43b59072 IPfuscated Cobalt Strike stager
2ded066d20c6d64bdaf4919d42a9ac27a8e6f174 IPfuscated Cobalt Strike stager (Hell’s Gate variant)
27b5d056a789bcc85788dc2e0cc338ff82c57133 IPfuscated Cobalt Strike stager

https://www.sentinelone.com/blog/what-is-a-malware-file-signature-and-how-does-it-work/
https://www.sentinelone.com/blog/active-edr-feature-spotlight/
https://www.sentinelone.com/contact/
https://www.sentinelone.com/request-demo/

15/18

SHA 256 Description
065de95947fac84003fd1fb9a74123238fdbe37d81ff4bd2bff6e9594aad6d8b UUID variant
0809e0be008cb54964e4e7bda42a845a4c618868a1e09cb0250210125c453e65 UUID variant
12d2d3242dab3deca29e5b31e8a8998f2a62cea29592e3d2ab952fcc61b02088 UUID variant
130c062e45d3c35ae801eb1140cbf765f350ea91f3d884b8a77ca0059d2a3c54 UUID variant
39629dc6dc52135cad1d9d6e70e257aa0e55bd0d12da01338306fbef9a738e6b UUID variant
5086cc3e871cf99066421010add9d59d321d76ca5a406860497faedbb4453c28 UUID variant
56c5403e2afe4df8e7f98fd89b0099d0e2f869386759f571de9a807538bad027 UUID variant
60cfce921a457063569553d9d43c2618f0b1a9ab364deb7e2408a325e3af2f6f UUID variant
6240193f7c84723278b9b5e682b0928d4faf22d222a7aa84556c8ee692b954b0 UUID variant
6a222453b7b3725dcf5a98e746f809e02af3a1bd42215b8a0d606c7ce34b6b2b UUID variant
6bdd253f408a09225dee60cc1d92498dac026793fdf2c5c332163c68d0b44efd UUID variant
9c90c72367526c798815a9b8d58520704dc5e9052c41d30992a3eb13b6c3dd94 UUID variant
9cd407ea116da2cda99f7f081c9d39de0252ecd8426e6a4c41481d9113aa523e UUID variant
a586efbe8c627f9bb618341e5a1e1cb119a6feb7768be076d056abb21cc3db66 UUID variant
c384021f8a68462348d89f3f7251e3483a58343577e15907b5146cbd4fa4bd53 UUID variant
c76671a06fd6dd386af102cf2563386060f870aa8730df0b51b72e79650e5071 UUID variant
e452371750be3b7c88804ea5320bd6a2ac0a7d2c424b53a39a2da3169e2069e9 UUID variant
e9bb47f5587b68cd725ab4482ad7538e1a046dd41409661b60acc3e3f177e8c4 UUID variant
e9da9b5e8ebf0b5d2ea74480e2cdbd591d82cd0bdccbdbe953a57bb5612379b0 UUID variant
efbdb34f208faeaebf62ef11c026ff877fda4ab8ab31e99b29ff877beb4d4d2b UUID variant
f248488eedafbeeb91a6cfcc11f022d8c476bd53083ac26180ec5833e719b844 UUID variant
e61ecd6f2f8c4ba8c6f135505005cc867e1eea7478a1cbb1b2daf22de25f36ce MAC Address Variant
f07a3c6d9ec3aeae5d51638a1067dda23642f702a7ba86fc3df23f0397047f69 MAC Address Variant
7667d0e90b583da8c2964ba6ca2d3f44dd46b75a434dc2b467249cd16bf439a0 IPv6 Variant
75244059f912d6d35ddda061a704ef3274aaa7fae41fdea2efc149eba2b742b3 x86 IPv4 Variant
7e8dd90b84b06fabd9e5290af04c4432da86e631ab6678a8726361fb45bece58 x86 IPv4 Variant
C2 Description
103.146.179.89 Cobalt Strike server
service-5inxpk6g-1304905614.gz.apigw.tencentcs[.]com Cobalt Strike server
service-kibkxcw1-1305343709.bj.apigw.tencentcs[.]com:80 Cobalt Strike server
103.146.179.89 Cobalt Strike server
1.15.80.102 Cobalt Strike server
175.178.62.140 Cobalt Strike server
84.32.188.238 Cobalt Strike server

YARA Rules
import "pe"

rule IPfuscatedCobaltStrike

{

 meta:

 description = "IPfuscated Cobalt Strike shellcode"

 author = "James Haughom @ SentinelLabs"

 date = "2022-3-24"

 hash = "49fa346b81f5470e730219e9ed8ec9db8dd3a7fa"

 reference = "https://s1.ai/ipfuscation"

 strings:

 /*

 This rule will detect IPfuscated Cobalt Strike shellcode

16/18

 in PEs.

 For example:

 IPfuscated | binary representation | instruction

 ++

 "252.72.131.228" | 0xE48348FC | CLD ...

 "240.232.200.0" | 0xC8E8F0 | CALL ...

 */

 $ipfuscated_payload_1 = "252.72.131.228"

 $ipfuscated_payload_2 = "240.232.200.0"

 $ipfuscated_payload_3 = "0.0.65.81"

 $ipfuscated_payload_4 = "65.80.82.81"

 $ipfuscated_payload_5 = "86.72.49.210"

 $ipfuscated_payload_6 = "101.72.139.82"

 $ipfuscated_payload_7 = "96.72.139.82"

 $ipfuscated_payload_8 = "24.72.139.82"

 $ipfuscated_payload_9 = "32.72.139.114"

 $ipfuscated_payload_10 = "80.72.15.183"

 $ipfuscated_payload_11 = "74.74.77.49"

 $ipfuscated_payload_12 = "201.72.49.192"

 $ipfuscated_payload_13 = "172.60.97.124"

 $ipfuscated_payload_14 = "2.44.32.65"

 $ipfuscated_payload_15 = "193.201.13.65"

 $ipfuscated_payload_16 = "1.193.226.237"

 $ipfuscated_payload_17 = "82.65.81.72"

 $ipfuscated_payload_18 = "139.82.32.139"

 $ipfuscated_payload_19 = "66.60.72.1"

 $ipfuscated_payload_20 = "208.102.129.120"

 condition:

 // sample is a PE

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and

 5 of ($ipfuscated_payload_*)

}

rule IPfuscationEnumUILanguages

{

 meta:

 description = "IPfuscation with execution via EnumUILanguagesA"

 author = "James Haughom @ SentinelLabs"

 date = "2022-3-24"

 hash = "49fa346b81f5470e730219e9ed8ec9db8dd3a7fa"

 reference = "https://s1.ai/ipfuscation"

 strings:

 // hardcoded error string in IPfuscated samples

 $err_msg = "ERROR!"

 condition:

 // sample is a PE

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and

 $err_msg and

17/18

 // IPfuscation deobfuscation

 pe.imports("ntdll.dll", "RtlIpv4StringToAddressA") and

 // shellcode execution

 pe.imports ("kernel32.dll", "EnumUILanguagesA")

}

rule IPfuscationHellsGate

{

 meta:

 description = "IPfuscation with execution via Hell's Gate"

 author = "James Haughom @ SentinelLabs"

 date = "2022-3-24"

 hash = "d83df37d263fc9201aa4d98ace9ab57efbb90922"

 reference = "https://s1.ai/ipfuscation"

 strings:

 $err_msg = "ERROR!"

 /*

 Hell's Gate / direct SYSCALLs for calling system routines

 4C 8B D1 mov r10, rcx

 8B 05 36 2F 00 00 mov eax, cs:dword_140005000

 0F 05 syscall

 C3 retn

 */

 $syscall = { 4C 8B D1 8B 05 ?? ?? 00 00 0F 05 C3 }

 /*

 SYSCALL codes are stored in global variable

 C7 05 46 2F 00 00 00 00 00 00 mov cs:dword_140005000,

0

 89 0D 40 2F 00 00 mov cs:dword_140005000,

ecx

 C3 retn

 */

 $set_syscall_code = {C7 05 ?? ?? 00 00 00 00 00 00 89 0D ?? ?? 00 00

C3}

 condition:

 // sample is a PE

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and

 all of them and

 // IPfuscation deobfuscation

 pe.imports("ntdll.dll", "RtlIpv4StringToAddressA")

}

rule IPfuscatedVariants

{

 meta:

 author = "@Tera0017/@SentinelOne"

18/18

 description = "*fuscation variants"

 date = "2022-3-28"

 hash = "2ded066d20c6d64bdaf4919d42a9ac27a8e6f174"

 reference = "https://s1.ai/ipfuscation"

 strings:

 // x64 Heap Create/Alloc shellcode

 $code1 = {33 D2 48 8B [2-3] FF 15 [4] 3D 0D 00 00 C0}

 // x64 RtlIpv4StringToAddressA to shellcode

 $code2 = {B9 00 00 04 00 FF [9] 41 B8 00 00 10 00}

 condition:

 any of them

}

MITRE ATT&CK – Hive Ransomware Gang

TTP Description MITRE ID
BAT/Powershell scripts Automate pre-ransomware deployment actions T1059
Scheduled Tasks Execute the ransomware payload T1053
Cobalt Strike Primary implant / backdoor S0154
ADFind Active Directory enumeration S0552 / T1087
SharpHashSpray Password spraying T1110.003
DomainHashSpray Password spraying T1110.003
Bloodhound/SharpHound Active Directory enumeration S0521 / T1087
Signed Ransomware Ransomware payload is digitally signed T1587.002
Domain Policy GPO Deploy ransomware via GPO T1484
Net-GPPPassword Steal cleartext passwords from Group Policy Preferences T1552.006
Rubeus Request Kerberos Ticket Granting Tickets T1558
Sharpview Active Directory enumeration T1087
RDP Lateral movement via RDP T1021.001
SAM Dump Credential theft T1003.002

