
1/8

Panchan’s Mining Rig: New Golang Peer-to-Peer Botnet
Says “Hi!”

akamai.com/blog/security/new-p2p-botnet-panchan

Akamai Security Research

June 15, 2022

Written by: Stiv Kupchik

Executive summary

Akamai security researchers discovered Panchan, a new peer-to-peer botnet and

SSH worm that emerged in March 2022 and has been actively breaching Linux

servers since.

Panchan is written in Golang, and utilizes its built-in concurrency features to

maximize spreadability and execute malware modules.

In addition to the “basic” SSH dictionary attack that is commonplace in most

worms, this malware also harvests SSH keys to perform lateral movement.

Akamai security researchers were able to gain access to the malware’s

communication protocol and its administration panel, and use them to analyze the

infection scope of the malware.

The most common victim vertical of Panchan (after telecom/VPS) is education. We

assume collaborations among different academic institutes might cause SSH keys to

be shared across networks, which may explain why this vertical tops the list. Akamai

security researchers reached out to the abuse emails associated with each victim IP.

To avoid detection and reduce traceability, the malware drops its cryptominers as

memory-mapped files, without any disk presence. It also kills the cryptominer

processes if it detects any process monitoring.

Based on the malware’s activity and victim geolocation, admin panel language, and

the threat actor’s Discord user’s activity, we believe the threat actor is Japanese.

Akamai MFA can mitigate the risk presented by SSH key harvesting. In addition,

configuring strong SSH passwords should stop the malware in its tracks since it uses

a very basic list of default passwords to spread. We have also published IOCs,

queries, signatures, and scripts that can be used to test for infection.

Introduction

https://www.akamai.com/blog/security/new-p2p-botnet-panchan

2/8

Panchan’s mining rig is a feature-packed Golang botnet and cryptojacker. Its peer-to-peer

protocol is straightforward — plaintext over TCP, yet it is effective enough to decentralize

the botnet. It is also capable of persistence and perseverance, and of monitoring evasion.

Baked into the malware is a “godmode” — an admin panel that is capable of editing the

mining configuration, which is then dispersed to the rest of its peers. To prevent

unwanted tampering, a private key is required to access godmode, which is then used to

sign the mining configuration. The malware contains a public key that is used to verify the

supplied private key. The admin panel is written in Japanese, which hints at the

creator’s geolocation.

The botnet introduces a unique (and possibly novel) approach to lateral

movement by harvesting of SSH keys. Instead of just using brute force or dictionary

attacks on randomized IP addresses like most botnets do, the malware also reads the

id_rsa and known_hosts files to harvest existing credentials and use them to move

laterally across the network.

The malware is written in Golang and uses Golang’s concurrency features for most of the

main logic — by running them as concurrent Go routines. The threat actor is on top of

new Go releases — the earliest detected malware version (from March 2022) was

compiled using Go 1.17.7 (released February 2022), while the latest sample was compiled

using Go 1.18 (released March 2022). In addition, Go 1.18 had some changes made to its

internal data structures, so neither any of the online tools nor the IDA disassembler could

parse the malware correctly and match function name to function pointer. In Appendix A:

Short dive into Go reversing, we describe how we overcame this.

In this report, we will describe the malware’s capabilities in detail, how we detected it, and

the process we went through to attempt to attribute it.

For a list of IoCs you can see the Github repository here.

Malware activity

The Akamai Security Research Team proactively monitors botnet and malware activity on

our global sensor network. We first noticed Panchan’s activity on March 19, 2022. The

malware’s peer-to-peer communication and wormability drew our attention, and

warranted further investigation.

While reverse engineering the malware, we developed scripts to “tune in” to the botnet

network, which allowed the team to gather a full list of infected machines (botnet peers).

We found 209 peers, 40 of which are currently active.

While the targets are dispersed worldwide, there seems to be a heavier concentration of

targets in Asia.

https://github.com/akamai/akamai-security-research/tree/main/malware/panchan

3/8

Our attribution of the threat actor’s Japanese origins (detailed later) may explain the

larger number of targets in Asia. Since it doesn’t seem that there is an organization behind

this malware, it is plausible that it is easier for the threat actor to stick to the close and

familiar.

Looking at victim verticals, most of the victim IPs are registered under their hosting/VPS

platform, so there isn’t much information there. The most common vertical among

monitored victims was education. This might be due to poor password hygiene, or it could

be related to the malware’s unique lateral movement capability with stolen SSH keys.

Researchers in different academic institutions might collaborate more frequently than

employees in the business sector, and require credentials to authenticate to machines that

are outside of their organization/network. Strengthening that hypothesis, we saw that

some of the universities involved were from the same country (e.g.,Spain) and others were

from the same region (e.g., Taiwan and Hong Kong).

Exploring the malware’s features

Infection vector — SSH worm

The malware is capable of self-spreading through SSH. It has two methods of generating

targets and authentication details:

 Existing SSH keys

The malware looks under the running user HOME directory for SSH configuration and keys.
It reads the private key under ~HOME/.ssh/id_rsa and uses it to attempt to authenticate to
any IP address found under ~HOME/.ssh/known_hosts. This is a novel credential harvesting
method we haven’t seen used in other malware.

 Brute-forcing credentials

The malware can randomize IP addresses and attempt a dictionary attack using a
predetermined user and password list. The brute-forcing spreader is spawned in a separate
process multiple times, limited only by the OS’s set limit on open files. The usernames and
passwords are fairly simple — combinations of default strings like "ubuntu," "root," "user,"
'‘debian," "pi," etc.

After a successful authentication to the target, the malware creates a hidden folder with a

random name under the root directory /, and copies itself to the hidden folder with the

name xinetd using sftp.

The malware then remotely executes the copied binary on the target machine (using

nohup) and passes it a list of peers over the command line. After a successful

infection, the malware initiates an HTTPS POST operation to a Discord

webhook, which is probably used for victim monitoring.

https://linux.die.net/man/1/nohup

4/8

Peer-to-peer communication

he botnet’s peer-to-peer protocol is fairly simple. Everything is sent in plaintext over TCP

port 1919. All peers listen on that port and create a rule to allow it in iptables.

Each message begins with pan-chan's mining rig hi! and ends with finish. Between them,

the malware sends configuration commands separated by newlines. There are only two

configuration options that we’ve seen: sharepeer and sharerigconfig.

sharepeer is fairly straightforward — it is followed by an IP, which is then added to the

malware’s internal peer list.

sharerigconfig is followed by a base64-encoded string, which is actually a JSON structure

that encodes the mining configuration, and a signature of that configuration:

The signature is validated using an internally saved public key to ensure authenticity. The

communication logic is also simple — upon a connection to or from a peer, the malware

parses its memory-saved configuration (that was obtained earlier, when it started

executing), generates the message string, and sends it. It also receives a similar message

from the other side and parses it. New peers are added to its peer list, while configuration

is overwritten if it is of a newer version.

To check for updates, the malware periodically connects to its saved peers.

Godmode

This is probably the most unique feature in the malware: It has an administrative panel

built directly into the malware’s binary. To launch it, we need to pass the malware the

string godmode as the first command-line argument (followed by a peer list).

Access checking

Even though the admin panel is baked into the malware, it can’t be accessed by just

anyone. To prevent unwanted access to the panel, the malware first requests a private key,

and only after validation can we access its interface.

We didn’t have the needed private key, so instead we patched the program to skip key

validation and accept any supplied private key (it only required a single JZ to JMP

modification).

Admin panel: stats

After supplying the private key and “logging in,” we are greeted with a status screen about

the current configuration.

5/8

The first section is peer stats, which are contacted before godmode is launched, based on

the peer list that is passed on the malware’s command line (we didn’t supply a peer list

while analyzing it, hence the zero).

The second section is the cryptomining configuration. It is in the same format as the

mining configuration that is sent between peers, but with Japanese text instead of

English. The language difference is likely because of ease of programming — printing

Japanese text is simple, but parsing it is harder, so the malware creator used English in

the configuration that is sent between peers.

Finally, we are given a menu with the following options:

1. Refresh the status screen

2. Print the active peer list

3. Update miner settings

4. Exit

Fileless miner

The malware deploys two miners — xmrig and nbhash. Both miner binaries come

base64-encoded inside the malware binary itself and are extracted and executed during

runtime. There is some novelty to the execution, however, as the miners aren’t

extracted to the disk at all. Instead, the malware uses the UNIX function

memfd_create to create a memory-mapped file with the miner binary content, so it can be

executed directly from memory without having a traceable filesystem path. From the

configuration we extracted from various botnet peers, it seems that the malware uses

NiceHash for its mining pools and wallets. NiceHash wallets are not blockchain wallets,

so we can’t see transaction and mining details on them to gauge actual

revenue.

Anti-kill

The malware catches Linux termination signals (specifically SIGTERM — 0xF and

SIGINT — 0x2) that are sent to it, and ignores them. This makes it harder to terminate

the malware, but not impossible, since SIGKILL isn’t handled (because it isn’t possible,

according to the POSIX standard, page 313).

Anti-monitor

This module is internally called antitaskmanager, but contrary to its name, it doesn’t

interfere with task manager operation. Instead, the malware continuously looks for the

processes top and htop. Upon finding them, it terminates the miner processes that are

currently running.

https://www.nicehash.com/
https://www.nicehash.com/support/general-help/wallet/why-is-nicehash-wallet-not-in-sync-with-blockchain
https://www.open-std.org/Jtc1/SC22/open/n4217.pdf

6/8

Persistence

The malware copies itself to /bin/systemd-worker and creates a systemd service with the

same name. This is probably done to mimic legitimate systemd services to reduce

suspicion and avoid investigation.

Attribution

There is an additional screen that is presented in the godmode panel, while validating the

private key.

The copyright claim is quite interesting — it both mentions Panchan and has an actual

Discord server! Following the link, it seems we can actually join that server, and we also

get the actual Discord username that Panchan uses. We assumed this server is the same

one that the malware reports to after a successful SSH connection.

We joined the server, hoping to find information about the threat actor, and see the

Discord notifications that the malware sends as part of the infection flow. We found none

of it — the main chat was empty, except for a greeting from another member that occurred

in March. It could be that other chats are only available to higher privileged members of

the server, and that’s why we didn’t see them. The only useful information we found was

that the server was created at the beginning of March 2022, very close to our first

observation of the malware.

Looking up other activity from that user, we could also find him active in Privex’s (a VPS

provider) Discord server.

Besides regular VPS, Privex also offers VMs that are pre-installed with blockchain node

software. This might mean that the threat actor is using them to host their own server, or

perhaps is actively targeting their VMs for cryptojacking.

Detection and mitigation

To assist with detection, we have created a repository with IOCs and Yara and Snort

signatures that can be used to test for infection. We have also developed a bash script that

can be run on a VM. It looks for the following Panchan indicators:

The process systemd-worker

The process xinetd, if it runs from a different path than /bin or /sbin

Processes listening on TCP port 1919

https://github.com/akamai/akamai-security-research/tree/main/malware/panchan

7/8

Akamai blue wave

In addition, outgoing communication over TCP ports 3380 and 3387 might indicate

traffic to the cryptomining pool.

For readers who want to proactively defend their networks, we have the following

recommendations:

Use secure and complex passwords. The malware uses a very limited number of

default username and password combinations that shouldn’t be configured on any

production machine. Creating strong passwords can greatly reduce the impact of the

malware.

Configure MFA where possible. Using an MFA would prevent any unauthorized

login attempt. Akamai MFA can help protect against SSH key harvesting, as well.

Segment your network where possible. Although it’s legitimate to have machines

open to the internet over SSH, it is wise to control who is allowed to connect to them

from the internet, as well as who they are allowed to connect with inside the

network. Configuring those access controls reduces the impact a breached machine

can have on the network, as well as reduces the overall attack surface.

Monitor your VMs’ resource activity. Botnets such as this, whose end goal is

cryptojacking, can raise machine resource usage to abnormal levels. Constant

monitoring can alert you to suspicious activity. In the case of Panchan, resource

usage monitoring would have also terminated the cryptomining entirely.

Appendix A: Short dive into Go reversing

Go executables are compiled statically, which means that all the executable’s

dependencies are compiled directly into the binary. This creates massive binaries with a

lot of functions (for reference, our malware was 30 MB with approximately 3,700

functions).

To assist with stack traces, Go has a pclntab structure that matches function names and

pointers inside the binary. This exists even in stripped binaries, so we can use it to find

function names.

In Go 1.18, this structure changed. Where before it held pointers to locations in the

binary, now it holds instead offsets from specific locations — function pointers are now

offsets from the first Go function (which is pointed in the pcln structure commented as

text_start in the picture above), name pointers are offsets from the start of the function-

name array, and both are referenced by offsets into a different array that holds function

data.

Written by

Akamai Security Research

8/8

